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ABSTRACT 

 

OBSTACLE AVOIDANCE AND PATH TRAVERSAL 

USING INTERACTIVE MACHINE LEARNING 

 

Jonathan Milton Turner 

Department of Computer Science 

Master of Science 

 

 

 

Recently there has been a growing interest in using robots in activities that are 

dangerous or cost prohibitive for humans to do.  Such activities include military uses and 

space exploration.  While robotic hardware is often capable of being used in these types 

of situations, the ability of human operators to control robots in an effective manner is 

often limited.  This deficiency is often related to the control interface of the robot and the 

level of autonomy that control system affords the human operator.  This thesis describes a 

robot control system, called the safe/unsafe system, which gives a human operator the 

ability to quickly define how the system can cause the robot to automatically perform 

obstacle avoidance.  This definition system uses interactive machine learning to ensure 

that the obstacle avoidance is both easy for a human operator to use and can perform well 

in different environments.  Initial, real world tests show that system is effective at 

automatic obstacle avoidance. 
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Chapter 1 – Introduction 

 There has been significant focus in recent years on using robots for tasks typically 

done by humans.  There are advantages to using robots instead of humans in many 

situations.  One of the primary sources of difficulty in using robots is enabling them to 

act in a manner that reduces and augments human effort rather than increasing it.  This 

thesis introduces a system designed to reduce human effort while navigating robots.  Part 

of this system in operation, shown in figure 1, demonstrates obstacle recognition. 

 

 

Figure 1 – System has marked obstacles with red and safe areas with blue. 

 There are various situations where using robots instead of humans is desirable 

because of the level of risk involved.  There are many things that humans have to do even 
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though they involve a great deal of risk to the human doing them.  One such example is 

military reconnaissance.  This activity is dangerous because usually the areas of most 

strategic importance are the areas where it is most likely that hostile enemy forces will be 

located.  If humans perform this activity they run a serious risk of being wounded or 

killed.  If a robot goes into enemy territory the worst that will happen is that it will be 

destroyed and have to be replaced.  There are various other military applications for 

robots that help reduce the risk to human life. 

 Another example of a situation where having a robot perform a given task would 

reduce the risk to human life is when the environment where the task is being performed 

is itself dangerous.  Such an environment might be inside a nuclear power plant.  

Maintenance has to be performed regularly to ensure proper operation of the facility.  

Exposure to radioactive environments is always risky to humans, so any potential 

exposure that can be avoided by using robots would reduce the risk to humans. 

 In addition to making tasks less dangerous for humans, there are also situations 

where it is simply easier or more cost effective to use robots.  An excellent example of 

that is space exploration.  Take for example the recent Mars rovers, one of which is 

pictured in figure 2.  Sending two robotic rovers to Mars cost approximately $800 million 

[BRAI04], whereas sending a manned spacecraft to Mars is estimated to cost anywhere 

from tens of billions to hundreds of billions of dollars (some estimates are even as high as 

a trillion dollars) [OBER04].  This extra cost is directly attributable to the extra materials 

and effort necessary to keep humans alive on such a journey.  Robots are much easier and 

less expensive to transport. 

 



www.manaraa.com

3 

 

 

Figure 2 – One of the Mars rovers [STEN02]. 

 Despite the many advantages of using robots there are disadvantages as well.  One 

of the main obstacles in using robots is getting them to do something useful.  In the past, 

operating a robot has been a very tedious and manual process.  The majority of the 

responsibility for operating the robot, navigating it through its environment, and 

interpreting the situation around it has been placed primarily on a human who directly 

controls the robot.  This is not only difficult for humans to do, it is also imprecise and 

time consuming.  Fortunately, not all robot control systems are of this limited, 

teleoperated type.  Some control systems used information available to the system 

(usually from sensors located on the robot) to make some simple, but useful decisions 

that help a user more easily navigate an environment.  The system described in this thesis 

is one such system.  Some others are discussed in chapter two. 
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1.1 The Safe/Unsafe System 

 This thesis details a system, referred to here as the safe/unsafe system, that 

addresses some of the difficulties related to traditional robot navigation.  The heart of this 

system is a user-trainable, vision-based obstacle detection mechanism based on the 

Crayons system [FAIL03].  With this Crayons-based system, a user may specify which 

areas are safe for a robot to travel and which areas are unsafe.  After the user has told the 

system which areas are safe and which areas are unsafe, the user is then able to give 

commands like “go over there” or “move to the other side of that obstacle” as opposed to 

lower level commands that might include “drive forward thirty-two inches” or “turn 

negative six degrees.”  Instead, the robot is responsible for these low-level commands.  

This is a type of system known as shared control.  Shared control systems are discussed 

in more detail in chapter two.  The robot performs basic obstacle avoidance, driving 

around the unsafe areas, to arrive at a location the user specifies.  Real-time, interactive 

trainability allows the system to be used in a wide variety of situations.  The purpose of 

the system is to make the robot responsible for many low level navigational commands 

thus allowing a human user to focus on higher level, strategic tasks.  The reason for doing 

this is to make navigating a robot easier for the human user.   
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Figure 3 – Obstacle blocking path between robot and desired goal location. 

 A basic example can help demonstrate the difference between the safe/unsafe 

system and a traditional robot control system.  Suppose there is a robot with a single 

obstacle directly in front of it, as shown in figure 3.  Next assume that the human user 

controlling the robot wants to move the robot to the goal location as marked in the figure.  

The robot will obviously have to go around the obstacle in order to be able to get to the 

desired goal.  This maneuvering can either be performed by the user or by the system.   

An explanation of the difference between these two options follows. 

 

1.2 Approaches to Robot Control 

In a traditional control system, the user would have to turn the robot so that 

driving it forward will no longer cause it to collide with the obstacle, as shown in figure 
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3.  The user must then drive the robot forward far enough so that it can get past the 

obstacle.  Since the obstacle will likely no longer be visible to the user when the robot is 

in the correct location, the user must guess at when the robot has gone far enough.  An 

example of a situation where an obstacle is no longer visible to the robot but is still in the 

robot‟s path is shown in figure 4. 

 

 

Figure 4 – Situation where an obstacle is not visible to robot, but potentially still in its path. 

The user will have to perform additional movements, like turning the robot to face the 

obstacle, to determine if the robot has traveled far enough or not.  If the robot has not 

traveled far enough or has traveled too far, even more movements might be necessary.  

Once the robot has moved far enough, the user must tell it to move to the goal.  The user 
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must determine where the goal is in relation to the robot‟s new position, as opposed to 

from where the robot originally was when the goal was identified, and how to get there.   

 

 

Figure 5 – An obstacle is marked as unsafe (red). 

 Next, take the same situation, but instead of a traditional robot control system the 

user has available the safe/unsafe system.  An obstacle is still directly in front of the robot 

and is blocking a direct path to the desired goal position.  At this point the user specifies 

what things are unsafe (the obstacle) and what things are safe (the area around the 

obstacle).  The system now knows that the obstacle should be avoided.  An example of 

such a classification is shown in figure 5.  The red indicates areas that are unsafe, while 

the blue indicates areas that are safe.  With this safe/unsafe classification, the user can 

now simply tell the robot to go straight to the desired goal location.  As the robot is 
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driving forward, the system will determine that the obstacle (the unsafe area) is in the 

robot‟s path.  The system will turn the robot to avoid the obstacle, drive the robot around 

the obstacle, and then correct the robot‟s path to take it to the originally specified goal 

location.  The user does not have to give any additional movement instructions beyond 

the initial “go to the goal location” command.  The classification that the user specified 

will be remembered by the system.   

As long as the robot is in an area that has obstacles that look similar to the 

original obstacle and safe areas that look like the original safe areas the user need not add 

any additional safe/unsafe information in order to get the robot to avoid the new 

obstacles.  If new types of obstacles or new types of safe areas are encountered, the user 

need only specify the new items as such and the safe/unsafe system will be able to avoid 

the new obstacles, as well as the old one, and know to travel in the new safe areas, as well 

as the old one.  Figure 6 shows the original example situation with the path the system 

causes the robot to travel in order to avoid the obstacle.   

 



www.manaraa.com

9 

 

 

Figure 6 – Obstacle blocking path to desired goal and the path determined by safe/unsafe system 

around obstacle. 

With traditional robot control systems the control is typically very direct.  A user 

controls a single robot.  The user has a joystick or similar control device.  When the user 

is manipulating the control device then the robot moves.  For example, when the user 

pushes forward on the joystick the robot moves forward.  When the user pushes left on 

the joystick, the robot turns left.  If the user doesn‟t manipulate the control device the 

robot doesn‟t move.  The system takes no initiative.  Also, with traditional robot control 

systems the user is in charge of maintaining a complete mental model of the situation.  

The system will report information back to the user about its environment, but will not try 

to interpret that information.  That is up to the user.  All navigation tasks are the 

responsibility of the user.  The user must remember virtually everything about the 
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environment, including the location and nature of obstacles and the desired destination.  

The user must also navigate the environment using relatively low level, rather unnatural 

commands, the above mentioned “move forward” or “turn left” type commands.  These 

factors combined make a traditional robot control experience difficult and inefficient for 

the user. 

 The safe/unsafe system addresses some of the drawbacks of traditional robot 

control systems by increasing the level of autonomy the robot has.  Care must be taken 

when adding automation to a system, as it is possible to make a system less effective by 

adding automation to it [BAIN83].  However, if proper automation is added in an 

effective way then the system can be easier to operate and the user‟s efforts can be made 

more efficient.  Following are some ways in which automation can improve the 

effectiveness of a system. 

 

1.2.1 Robot Perspective vs. User Perspective 

 One area in which increasing autonomy in a robotic system can improve the 

effectiveness of the system is in regards to difference between user perspective and robot 

perspective.  An example of this is a problem often encountered when using the robots on 

which the system in this thesis was implemented.  This is the problem of corner clipping.  

This problem was almost invariably encountered with inexperienced users, but not 

infrequently encountered with even relatively experienced users.  The difficulty stemmed 

from the fact that from where the camera is situated on the robot, to the user it appears as 

though the robot may have passed an obstacle when it fact it hadn‟t.  The user, assuming 

the robot was past the obstacle would turn and continue driving.  Since the robot was not 
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actually past the obstacle it would collide with the obstacle, causing the robot not to move 

or to move in a manner unexpected by the user.  This obviously caused great frustration 

for users and increased the difficulty of navigating the robots.  However, in the 

safe/unsafe system, the automation can take into account the size of the robot when 

determining when and how much it should turn and will consequently not make a turn 

that is too close to an obstacle. 

 A second area in which automation can take advantage of the difference between 

robot perspective and user perspective is that it is possible for a robotic system to handle 

more simultaneous inputs than a human user can.  For example, a human user might have 

a difficult time interpreting data from several cameras, several sonar sensors and 

odometry sensors all at the same time.  Depending on the hardware being used, a robotic 

system could handle all the above sources of information without being confused by 

trying to interpret all the data in unnecessary ways.  The difference between robot and 

user perspective can also be taken advantage of in the case of high latency control 

situations.  For example, with the Mars rovers it can take several minutes for a complete 

feedback cycle to occur.  The robot can travel a great distance and encounter a wide 

variety of situations in that amount of time if it is traveling autonomously. 

 

1.2.2 Driving With Distractions 

 Another area in which increasing autonomy in a robotic system can improve the 

effectiveness of the system is in situations where the user is attempting to control a robot 

while being distracted.  An example of such a situation might be a military environment 

where a soldier is controlling a robot to gain reconnaissance information while trying to 
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complete other, non-related orders.  The soldier could focus on the non-related orders 

while only occasionally focusing on controlling the robot.  When the soldier is not 

focusing on the robot it can continue to perform useful work autonomously. 

  A related benefit of increased autonomy is the ability to control multiple robots.  

This is similar to the example given above where a user performs non-related tasks while 

a robot moves autonomously.  However, in this case the “non-related tasks” involve 

controlling one or more other robots.  So a user gives a command or set of commands to 

a robot.  While the robot is performing those actions the user can give commands to 

another robot.  If the first robot is still performing the commands given when the user 

finishes giving commands to the second robot then the user could start giving commands 

to a third robot.  The number of robots that can be controlled depends on how 

autonomous the robots are and the limits of the user‟s ability to focus on multiple tasks 

[OLSE04]. 

 One of the main reasons for controlling multiple robots with a single user is to 

increase user efficiency.  Since fully autonomous robots have not yet proven effective in 

most situations, the most important part of a robotic control system is arguably the human 

user.  The robot can perform useful work, but only when so instructed by the user.  Thus 

it makes sense to utilize the most important part of the system, the user, in the most 

efficient manner possible.  When using multiple robots, the user‟s time and talents can be 

more efficiently utilized by generating new commands for one robot while waiting for 

another robot to finish commands already given.  This allows the user to perform useful 

work instead of simply watching idly while waiting for a single robot to perform a set of 

commands the user has given it. 



www.manaraa.com

13 

 

 How a user‟s abilities can be more effectively used with multiple robots is 

illustrated in a search example.  Suppose that an area of fixed size must be searched.  The 

search could be for a person, such as in a search and rescue operation, or for land mines 

in a military setting.  Given one robot, a user could search the entire area in a certain 

amount of time.  However, if the user were given five robots, the area could be searched 

in approximately one-fifth the time.  This, of course, assumes that the robots are 

sufficiently autonomous and the user sufficiently skilled so that all five robots may be 

controlled at once. 
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Chapter 2 – Related Work 

 The safe/unsafe system has similarities to many previous works.  This chapter 

discusses some of these various works which include shared control systems, sonar and 

laser-based navigations systems and vision-based systems. 

 

2.1 Shared Control 

The safe/unsafe system is similar to some shared control navigation approaches.  

Shared control systems, also called collaborative control systems, have been a topic of 

much research [FONG98] [BRUE03].  In general, shared control systems allow the 

system to control some part of the robot navigation, thus allowing a user to control it 

more easily and focus on higher-level goals [CRAN02].  Exactly what the robot does is 

determined partly by commands given by the user and partly by commands generated by 

the safe/unsafe system.  Rosenblatt [ROSE95] describes a general shared control system.  

Various components generate desired behavior (or commands).  These desired commands 

are then combined to determine the actual action that will be taken.  The safe/unsafe 

system essentially has only two such components, the obstacle avoidance module and 

commands from the user.  Röfer and Lankenau detail several different classes of shared 

control systems [ROFE99], one of which is similar to how the safe/unsafe system 

combines user commands and automated adjustments.  Different types of shared control 

systems can be more effective than others, depending on the situation [BRUE04].  Some 

shared control systems allow for automatic preemption of user commands.  In these 

situations the system is able to modify or nullify a user command if it is deemed 
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inappropriate.  In the safe/unsafe system, user commands are modified so that the robot 

avoids obstacles, but the system will respond immediately to any new user commands.  

This is similar to the first shared control mode (the speed controller supervisory mode) 

discussed by Röfer and Lankenau.  However, these shared control systems are based on 

sonar and only provide limited obstacle avoidance whereas the safe/unsafe system is 

based on vision and provides path traversal capabilities in addition to obstacle avoidance.   

 

2.2 Sonar/Laser 

 Many systems have been implemented that use sonar for robot navigation 

[BORE89], [BORE91], [JENS99], [LEVI99], [MING00], [OHYA98].  These systems 

use sonar sensors to get the distance and heading to obstacles in the robot‟s environment.  

This information is used to create a representation of the obstacles in the robot‟s 

environment.  The systems then use this obstacle information to modify or override user 

commands that would cause the robot to collide with an obstacle according to the 

information obtained from the sensors.  Some systems [JENS99] use laser range finders 

in place of sonar sensors.  The primary differences between sonar and laser sensors are 

that the laser sensors are more accurate, less susceptible to noise and generally more 

expensive.   

 Sonar and laser-based systems are effective at navigating many types of 

environments.  The computational requirements necessary for such a system are 

relatively low.  However, such systems have difficulty navigating environments that do 

not consist of positive space obstacles (environments where the obstacles are holes or flat 

delineators) or if the environment is such that the obstacles cannot easily be detected by 
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the sensors.  Some examples of environments where obstacles would be hard to detect 

would be environments where the navigation surface is not level (if the robot is tipped 

forward or backward the sensors might not detect an obstacle) or environments 

containing obstacles too short to be detected by the sensors or not solid enough to reflect 

the sonar or laser (an example of this might be a bush or small tree). 

 Another potential disadvantage of sonar and laser-based systems is that there is a 

significant amount of information in an environment that they are not able to collect or 

use.  Sonar and laser sensors are not able to detect or use any visual information (such as 

color).  In many navigational tasks this type of information is not critical to successful 

navigation of the environment, but in some situations such information is critical. 

 

2.3 Vision-Based 

 Other systems use visual information for navigation instead of information from 

sonar or laser sensors.  For the purposes of this thesis these types of systems have been 

divided into two general categories: fixed and trainable.  Fixed vision-based systems 

employ no learning aspect.  The ways in which new images received are interpreted and 

environmental information extracted from them is always the same.  The algorithm used 

is always the same regardless of past experience or use input.  Trainable vision-based 

systems involve some form of learning.  The system can learn how to process new 

images in different ways or how to interpret the information differently.  In order for the 

system to learn how to deal with the images it receives it must be trained.  The training 

process can greatly affect the performance of the system.  The safe/unsafe system is a 

type of trainable vision-based navigation system.  The differences between the 
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safe/unsafe system and other trainable vision-based systems are discussed below in the 

trainable vision-based section. 

 

2.3.1 Fixed Vision-Based 

 Fixed vision-based systems have a set algorithm used to process new images and 

extract information from them.  A common element of fixed vision-based systems is the 

use of feature areas.  These are areas that have some visual characteristic that can be 

fairly easily recognized and can be used to distinguish the area from other areas in the 

image.  These same characteristics can be checked for in other images.  Such 

characteristics can be determined for an image at a known location.  If the characteristics 

in a new image are the same as those computed for the area in the image whose location 

is known then it is assumed that the new area is the same location in the environment as 

specified in the original image.  This way the same environmental location may be 

identified in two different images, whether these images were seen consecutively or one a 

great deal of time after the other.  Since visual information is used, fixed vision-based 

systems are able to draw from a much richer set of information than sonar or laser-based 

systems, as discussed above.  However, fixed vision-based systems suffer from two 

major drawbacks.   

The first drawback to fixed vision-based systems has to do with general 

environment navigation.  Systems such as those discussed by Davison [DAVI99] and 

Ohya et al [OHYA98] use the above mentioned feature areas to determine where the 

robot is in a previously created environment map.  A map of the area in which the robot 

is going to navigate is created.  In this map, several points of interest are identified.  
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Feature information about these points is generated and stored.  As the robot is navigating 

it looks for areas in the images it receives that match the features for these points.  When 

such a point is detected with a given degree of certainty the system uses that information 

to determine where the robot is in the environment.  The environment map can then be 

used to generate a path to other areas in the environment. 

The obvious disadvantage of such an approach is that a detailed map of the 

environment must be generated before the robot can effectively navigate said 

environment.  In some situations, like an office space or warehouse, the robot will never 

leave its environment or encounter significantly different environmental characteristics.  

In such a situation relying on a detailed, previously generated map might be acceptable.  

However, in many situations the environment that the robot is to navigate changes very 

drastically during navigation.  In other situations the robot‟s environment cannot be 

mapped adequately a priori, meaning a detailed environment map cannot be generated 

before navigation.  Such examples might include space exploration (the purpose of 

sending a robot being to investigate a previously unknown environment) or a war zone 

(where buildings or geographic landmarks can be changed significantly or even destroyed 

while a robot is navigating). 

Other fixed vision-based systems do not require such a previously generated 

environment map.  These types of systems, such as those discussed by Davison et al 

[DAVI95], Lang et al [LANG99], Murray et al [MURR96], and Zhang [ZHAN92] are 

similar to the fixed vision-based systems discussed above.  They find areas with features 

that are identifiable and discernable from other areas in an image.  Corresponding areas 

are then found in subsequent images that the system receives.  The location of 
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corresponding areas in two or more images may be compared to determine information 

about the robot‟s environment and how the robot is moving in that environment. 

However, there is another drawback to vision-based systems, whether or not they 

require a pre-generated environment map.  This second drawback is the fixed nature of 

such systems.  If the algorithm for processing new images and extracting information 

from them is always the same, then there is a very real possibility that such a system 

would perform adequately in one environment and fail completely in another 

environment.  Take, for example, the system described by Lang et al [LANG99] that uses 

information gleaned from the perpendicular lines in a suspension ceiling to aide the 

system during navigation.  Not even taking into consideration environments that do not 

have a ceiling, it can be seen that such a system could perform very well in some 

environments and fail in others.  This is because the algorithm would be expecting to find 

information about perpendicular lines on the ceiling regardless of what type of ceiling (or 

lack thereof) exists in the environment.  It will always generate the same kinds of 

information, whether or not that type of information exists in or is relevant to the 

environment the robot is in.  The other fixed vision-based systems mentioned here suffer 

from the same drawback. 

 

2.3.2 Trainable Vision-Based 

 Trainable vision-based systems are similar to fixed vision-based systems in that 

they receive new images and extract information from these images about the 

environment that the robot is in.  The difference between trainable vision-based systems 

and fixed vision-based systems is that the interpretation of a given set of input images 
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when using a trainable system can be different depending on how the system was trained.  

The interpretation of a given set of input images will always be the same for a fixed 

vision-based system.  Trainable vision-based systems can learn to recognize trees 

[LECU05], soccer balls [MITR05], people and faces [PAPA00] or places the robot has 

already been to [CHAN99] as well as other items in a given environment. 

 A trainable vision-based system, as its name implies, requires some type of 

training.  The system does not do any useful interpretation of images until it has been 

trained to some degree.  Training consists of a human user giving some type of 

interpretation of an image or a part of an image.  This interpretation can range from 

identifying an object in the image [MITR05], [PAPA00] to identifying which way a robot 

should turn [CHAN99], [LECU05].  The sample images combined with the interpretation 

of those images is often called training data. 

 The safe/unsafe system is a trainable vision-based with some significant 

differences from a normal trainable system.  One of the greatest strengths of the 

safe/unsafe system, when compared to other trainable systems, is in regards to how it is 

trained.  Most trainable systems require a distinct training phase that must happen 

independent from and prior to any kind of navigation phase.  Once the training phase is 

complete and the navigation phase started no more training can occur unless the robot is 

taken out of the field and additional training data created for it.  This process could take 

hours or days or weeks.  It is something that most systems try very hard to avoid doing.  

However, with the safe/unsafe system the user is able to add more training data as the 

robot is navigating.  The process only takes seconds.  The way incoming images are 

interpreted changes as soon as the new training data is added.  This is one of the greatest 
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advantages of the safe/unsafe system in general and is its single greatest advantage over 

other trainable vision-based systems. 

 

2.4 Interface Support 

 Many robot control systems use the system‟s user interface in order to help the 

operator more effectively navigate a robot.  The control interface can make robot 

operation more effective in the way it displays sensory information [MURP96].  Robots 

are often equipped with sensors that are not directly analogous to a human sense (such as 

sonar).  The way in which the interface displays information from these types of sensors 

can greatly aid or greatly confuse the user.  The interface may also interpret this 

information (to build a map for example) and combine it with other sensory information 

such as video [NIEL06] to give the user the benefit of using multiple types of sensors.  

Additionally, the interface may let the user change the level of autonomy the system 

exhibits based on the situation [YANC05].  The system‟s current model of the world may 

also be displayed by the interface in a way that is relatively easy for the user to 

understand and interpret [DRUR03].  The safe/unsafe system uses several of these ideas 

(displaying an interpretation of sensory input and the system‟s current model of the 

world) or variations on them (displaying sensor data and interpreted sensor data as 

though they were from two different types of sensors) to aid users in performing effective 

robot navigation. 
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Chapter 3 – Overview 
 

 This chapter provides details about the robotic platform used to implement and 

test the system.  The overall interaction between different components of the system is 

also detailed.  The details of the individual components are provided in subsequent 

chapters. 

 

 

Figure 7 – Two views of robot, with different components marked. 

 

3.1 System Components 

 The robots used to implement and test this system consist of a transport platform, 

a low-level control board, a laptop and a camera.  The transport platform is custom made 

for these robots and is shown in figure 7.  It is capable of holding and transporting all of 

the other robot‟s components.  It includes two powered wheels plus two additional, 

smaller wheels for stability.  The low-level control board is called a Javelin board.  It 

contains a limited Java virtual machine.  The Javelin board accepts commands over a 

serial connection to the laptop.  It can also send back status information to the laptop.  
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The Javelin board has been programmed to accept commands of the type “drive forward 

x inches” or “turn left y degrees”.  These commands are then translated into actual wheel 

movements by the Javelin board.  The Javelin board keeps track of the command it is 

currently executing, how much of the command has been executed and when the wheels 

should stop moving because the command is complete.  The Javelin board is paired with 

an additional control board, which regulates the exact voltage applied to the wheel 

motors.  Two pairs of 7.2V rechargeable batteries power the Javelin board and motors. 

 The laptop communicates with other computers.  There is a controlling, desktop 

computer that is connected to the laptop through a wireless network (802.11g).  The user 

can operate the robot with the desktop computer.  All commands sent from the desktop to 

the laptop are translated into simpler commands that can be given to the Javelin board.  

Also all image processing and path generation functions (both of which will be described 

in more detail shortly) occur on the laptop.  The camera is attached to and operated by the 

laptop.  The basic robot control system is capable of using one or three cameras.  

However, the obstacle avoidance system currently only uses one of the cameras. 
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Figure 8 – Navigation interface with different areas labeled by functionality. 

 

3.2 Navigation Interface 

 The robot control interface is based on a “click where you want to go” mentality.  

An image from the point of view of the robot is shown to the user.  The location the user 

clicks on the image determines the type of command that is issued.  The interface is 

shown in figure 8.  If the user clicks on the lower half of the image, the robot will turn 

until it is facing that point and then drive forward until it is on top of the point where the 

user clicked.  If the user wishes the robot to turn but not drive forward, the upper half of 

the image can be clicked.  The robot will turn to face the point the user clicked, but will 
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not drive forward.  Due to the limited field of view of the cameras being used, the user 

sometimes desires to turn farther than is visible by the camera.  For these situations the 

user may click on the circle in the upper right-hand corner.  One can imagine the robot 

being at the center of the circle facing up.  How far around the circle the user clicks 

determines how far the robot will turn.  For example, if the user were to click at three 

o‟clock on the circle, the robot would turn ninety degrees to the right.  If the user were to 

click at six o‟clock the robot would turn one hundred eighty degrees.  For situations 

where the user wants to simply drive forward, there is a small section in the middle of the 

view where the user can click to accomplish this.  For safety and convenience purposes, 

the user may click on the rectangle in the upper left-hand corner to stop the robot at any 

time.  When the user does this any movement commands the user has previously given or 

that the robot is currently following are immediately terminated and the robot will take no 

further action until more commands are given. 

 The system is able to translate where a user clicks on the screen into movement 

commands for the robot by translating pixels in camera space into an angle from the 

robot‟s center of view and into a distance from the robot.  This process is shown in 

figures 9 and 10.  The system must be calibrated to accurately map pixels in image space 

to angles and distances.  This is done by measuring angles and distances for a small 

number of pixels.  The angle from the center of the robot‟s view and the distance from 

the robot for these few pixels are then known.  However, it is impractical to take such 

measurements for all the pixels in the image viewable from the robot‟s camera.  For the 

pixels that do not have explicit measurements linear interpolators are used, one for 

distance and another for the angle.  An interpolator interpolates, or estimates, an 
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unknown value that is between two known values.  For example, if a pixel at height 100 

is manually mapped to 50 inches and a pixel at height 200 is manually mapped to 80 

inches then the linear interpolator for distance might give a pixel at height 150 a distance 

of 65 inches.  This interpolation does not result in perfectly precise distances and angles, 

but given a sufficient number of manually measured points it does give adequate and 

effective results.  This algorithm also assumes that the world in which the robot is 

traveling is flat.  The effects of this assumption and why it only has minimal impact on 

the safe/unsafe system are discussed in chapter 5. 

 

 

Figure 9 – Mapping a pixel seen to a distance from the robot (side view). 
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Figure 10 – Mapping a pixel seen to a distance from the robot and an angle from the center of view 

(top view). 

 

3.3 Safe/Unsafe Specification 

 The system described above was implemented previously to and is not the focus 

of this thesis.  Rather this thesis focuses on an addition to the above system whose 

purpose is to increase the efficiency with which a user may control the robot.  The basic 

system combined with the addition is what is referred to here as the safe/unsafe system.  

This section describes how the various parts of this system work and interact.  Extensive 

details about each part are covered in subsequent chapters. 
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Figure 11 – Navigation and safe/unsafe specification components of user interface. 

 On the user interface for controlling the robot, the user is shown two images from 

the camera on the robot.  An example of this interface is shown in figure 11.  One of 

these images is used for navigation, as described above.  The other is used to specify 

obstacle avoidance information.  The user may draw on this second image with the 

mouse.  The left mouse button draws in one color while the right mouse button draws in 

another color.  The colors that were chosen were blue for the left button and red for the 

right button.  The purpose of this is to specify areas that are safe for the robot and areas 

that are unsafe for the robot.  The blue areas represent areas that are safe, while the red 

areas represent areas that are unsafe.  Using the left mouse button will denote safe areas 

(blue) and using the right mouse button denotes unsafe areas (red).  After the user 

finishes drawing on the image, that information is sent to the robot.  The systems on the 

robot use that information (combined with any such previously received information) to 

train a classifier.  The classifier is trained to classify images in terms of what areas in the 

image are safe and what areas are unsafe.  When new images are received from the 

camera on the robot they are classified by the safe/unsafe classifier.  This classification is 

sent back to the user interface and displayed over the image that the user draws on.  The 
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transparency of the layer may be modified by the user.  This allows the user to see what 

is currently being classified as safe and unsafe.  The user will be able to immediately find 

areas that are misclassified and supply more training data to correct the classification. 

 Figures 12 through 15 show these classifier training principles.  In figure 12, no 

training data has yet been provided (no classification overlay on the left-hand image).  

The user is drawing in red, specifying that the orange area on the floor is unsafe.  Figure 

13 shows the resulting classification.  Everything is classified as unsafe.  This is because 

the system does not yet have any counter examples.  The user draws on an area of floor in 

blue to specify that the floor is safe.  The classification after adding these two pieces of 

training data is shown in figure 14.  With only minimal training data the system is already 

classifying the orange areas correctly as unsafe and the floor correctly as safe.  The 

orange area on the right is correctly classified as unsafe, even though it was not 

specifically marked as unsafe.  Figure 15 shows an incorrect classification.  Part of the 

floor is being classified as unsafe.  The user is drawing in blue on the incorrectly 

classified part of the floor to specify that is it safe.  A new classifier will be created that 

will correctly classify the floor as safe.  These principles are discussed in more detail in 

the next chapter. 
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Figure 12 – User specifying that the orange area is unsafe by marking on it with red. 

 

 

Figure 13 – Everything is now classifying as unsafe (red).  User specifies that floor is safe by marking 

on it with blue. 
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Figure 14 – Orange areas are now properly classified as unsafe (red), and floor is properly classified 

as safe (blue). 

 

 

Figure 15 – Use correcting a misclassification of the floor by marking on it with blue. 

 

3.4 Map Generation 

 In addition to sending the classification to the user interface, the robot uses the 

classification to build a map of its environment.  By using the same mechanism employed 

in the navigation component, a point on an image from the camera (camera space) may 

be translated into point in the robot‟s environment (environment or map space), by 
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getting the angle from the center of view and distance to the robot.  Since each pixel in 

the camera image is classified as safe or unsafe and each pixel in the camera image can 

be mapped to a point in the robot‟s environment, a map of the obstacles in the robot‟s 

environment can be built.  An example of such a map is shown in the left-most pane of 

figure 16.  The process will be discussed in more detail in chapter 5. 

 

 

Figure 16 – The navigation, safe/unsafe and path traversal components of the user interface. 

 

3.5 Path Traversal 

 This environment map is sent back to the user interface for display to the user.  

The environment map is also used to help the robot avoid obstacles while navigating.  

Suppose that the user tells the robot to drive forward, but that there is an area between the 

robot and the user-specified destination that is being classified as unsafe.  The robot can 

use the environment map to first detect that such an obstacle exists and not run into it and 

second to plot a safe path around the obstacle to end up where the user originally told it to 

go.  When the robot is given a movement command it generates a safe path to the 

specified location using the environment map.  It then starts moving, making sure to 

follow the path it has generated.  As the robot moves, the environment map is translated 

and rotated based on the forward movement and turning of the robot.  Also as the robot 
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moves and its camera receives new images and they are classified, the environment map 

is updated with the new classification information.  Thus the robot will always have 

current information about the safeness and unsafeness of what is directly in front of it but 

will also be able to “remember” how safe and unsafe the areas are that are no longer 

directly visible.  This process will be discussed in more detail in chapter 6. 
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Chapter 4 – Classification 

 The classification portion of the safe/unsafe system is the first step in allowing the 

system to perform obstacle avoidance.  Without classification, the system would not be 

able to interpret the images the robot receives from its camera.  Once what the robot is 

seeing is interpreted, or classified, information can start being gathered about the robot‟s 

environment.  In the case of the safe/unsafe system it is the map generation module 

(described in the next chapter) that takes the interpretation of what the robot sees and 

extracts information from it about the environment the robot is in. 

The classification employed in the safe/unsafe system uses machine learning to 

create a classifier which interprets new incoming images.  This classifier must be trained.  

Training a classifier requires adequately labeled training data.  The training data is 

obtained by having the user “draw” what areas are safe and what areas are unsafe.  The 

image the user has drawn on is considered the data, while the “ink” the user has drawn on 

the image is considered the classification of that data. 

 

4.1 Decision Trees 

 While various types of machine learning could be used to create the safe/unsafe 

classifier, for this system decision trees [MITC97] were chosen for several reasons.  The 

basic idea of a decision tree is to build a tree where each node in the tree asks a question 

about the data being classified.  The answer to that question determines how the tree is 

traversed and eventually what classification the incoming data will receive.  A simple 

example of a decision tree would be one with a single node.  The question at the node 
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would be, “Is the pixel being classified completely black?”  If the answer is yes then the 

pixel is classified as unsafe.  Otherwise the pixel is classified as safe.  In more complex 

decision trees, instead of a node having classifications for its children it has other nodes.  

All the leaves in the tree, of course, have to be classifications.  Decision trees do not have 

to be binary, but the ones implemented for this system are. 

In order to be able to have more useful “questions” at each node, features are 

generated for each pixel.  These features are used to determine qualities of a given pixel 

and how it relates to the pixels around it.  This allows information beyond the simple 

RGB values of a given pixel to be used in determining its classification.  In the system as 

it is currently implemented, there are over 200 features generated for each pixel.  Some of 

these features are as simple as the RGB values for the pixel being classified, while others 

take into account many of the pixels around the pixel in question.  Some of these more 

complex features include the sum of the red component of all the pixels in a 3x3 square 

around the pixel in question, the sum of the blue component of all the pixels in a 9x9 

square around the pixel in question and the difference between the sum of the red 

component of all the pixels in a 9x9 square and sum of the green component of all the 

pixels in a 3x3 square.  The areas dealt with range in size from 1x1 to 225x225.  There 

are also features that deal with the minimum or maximum red, green, or blue value over 

an area, the average red, green or blue value over an area, the difference between 

averages, and the difference between an average over an area and a sum over an area.  

Most differencing features have both areas centered around the pixel in question.  Other 

features calculate the difference between two areas to either side of the pixel in question, 
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both horizontally and vertically in order to detect edges.  All features are listed in the 

appendix. 

All 200 features must be generated for each pixel when the classifier is being 

trained and at least some of the features must be generated when a pixel is classified.  

Since most of the features have to do with color values over an area, a technique known 

as integral images [VIOL01] is used to calculate these values quickly.  An integral image 

is created for each color plane (red, green and blue) on each image.  Each pixel in an 

integral image is the sum of the pixels above and to the left of it.  Once the integral image 

has been created, the sum of the values over any arbitrary rectangle in the original image 

can be calculated in constant time by using the values in the integral image at the corners 

of the rectangle.  This allows sums of areas to be calculated and compared quickly and in 

constant time.  Thus the system can use the information about a large area around a given 

pixel without incurring a high calculation time. 

 Decision trees offer several benefits as they are used in the system.  For the 

safe/unsafe system, the training process must be able to happen in real time.  Decision 

trees have very fast classification times compared to most machine learning algorithms.  

Decision tree also have a fast training time compared to most machine learning 

algorithms.  For the safe/unsafe system the classification must be fast, both in order to 

allow the robot to navigate effectively while traveling at a reasonable speed and to give 

the user fast feedback about the quality of the classifier currently being used.  The 

training times must be fast so that the user can quickly add new data and correct 

misclassifications.  If the system took hours or even minutes to create a new classifier 

every time the user added more data, the system would be considerably less useful.  The 
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classification times of the system must be fast because each image that is received must 

be classified.  To do this most of the pixels on the image must be classified.  A separate 

classification is generated for each pixel.  If the system takes too long classifying pixels it 

may not be able to recognize obstacles in its environment quickly enough, and run the 

risk of colliding with them.  For the purposes of this system, decision trees offer a good 

balance between training times and classification times. 

 Another benefit of decision trees is that they can typically use a small working set 

of the total available features for classification.  For example, in the system implemented 

there are over 200 features.  When the classifier is being trained, the features that best 

classify the training data are used to create the decision tree.  It is not uncommon for a 

good classifier to only use ten of the available 200 features to build a decision tree, but 

depending on the environment a different set of ten features will be used.  This allows for 

smaller decision trees, since each node of the tree can be more “descriptive” in how it 

classifies or categorizes the data.  A smaller tree in turn leads to faster classification times 

since fewer nodes have to be traversed in order to classify a given pixel. 

 There are many variations on the basic decision tree algorithm.  The safe/unsafe 

system was implemented in such a way that different variations can be used relatively 

easily.  However, one particular implementation was used the most often as it provided 

the best overall classification quality and execution time in the situations in which the 

system was used.  The quality and execution time of the implementation were compared 

empirically to other implementations.  This implementation is a binary decision tree that 

uses subsampling and standard deviation split points.   
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In a decision tree, a choice must be made at each node as to which feature should 

be used at that node.  The training examples whose classification would use a particular 

node in the tree are used to determine which feature should be used at that node.  A 

standard decision tree used all the training examples available to it to determine which 

feature to use at any given node.  In the safe/unsafe system the number of training 

examples can quickly grow into the thousands or even millions.  In order to reduce the 

impact on training time that all these examples have, a subsample of the examples at each 

node is used.  This can greatly reduce the training time while only slightly impacting the 

classification time (since each node is only looking at a subset it is not as effective at 

dividing the remaining data as it could be, thus resulting in a slightly increased tree 

depth). 

A second optimization to the standard decision tree algorithm that is used in the 

decision tree algorithm employed in the safe/unsafe system is the use of standard 

deviation split points.  At each node of the tree a feature of the data being classified must 

be inspected.  The node splits the tree depending on the value of that feature.  This value 

is called a split point.  In the standard decision tree algorithm, the value of each training 

example is used as a potential split point.  The algorithm finds the best of all possible 

split points.  There are different metrics for determining which split point is best, but they 

all deal with how that split point would divide up the training examples.  With the 

standard deviation optimization, instead of checking the value of each training example 

for a potential split point, the mean and standard deviation are used to find “clusters” of 

training examples.  The values of these “clusters” are used instead of the values of the 

individual examples.  This allows for potentially superior split points.  This results in a 
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smaller tree which translates into decreased classification times.  Again, the size of the 

tree was compared empirically with other implementations. 

 

4.2 Classifier Training 

 The safe/unsafe system uses a decision tree as the basis for its classification 

process.  But this decision tree must be built using data that has been labeled as safe and 

unsafe by the user.  This labeled data is called training data.  Each time the user supplies 

new training data the previously constructed decision tree is discarded and a new one is 

built using both the new training data and any previously received training data.  The 

classification portion of the safe/unsafe system uses a decision tree to classify each pixel 

in an image received from the robot‟s camera, marking each as safe or unsafe.  The 

following images show an example of how a safe/unsafe classifier might be trained.  The 

images are discussed below.    

 

 

Figure 17 – User specifying that the orange area is unsafe by marking on it with red. 
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Figure 18 – Everything is now classifying as unsafe (red).  User specifies that floor is safe by marking 

on it with blue. 

 

 

Figure 19 – Orange areas are now properly classified as unsafe (red), and floor is properly classified 

as safe (blue). 

Figure 17 shows a view from the robot‟s camera before the user specifies any 

training data.  In the view on the left the user is adding an unsafe (red) specification to the 

orange area on the floor.  This is to specify that the orange area is an unsafe area and that 

the robot should not drive on it.  When the user presses the right mouse button down, red 

ink (specifying unsafe) begins to be drawn.  Anywhere the user moves the cursor on the 

image is marked as unsafe.  When the user releases the right mouse button the current 
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image from the camera is saved with the ink the user has drawn on it.  This information is 

passed to the classifier.  The classifier uses each pixel from the camera image that has ink 

associated with it.  Camera image pixels that the user did not mark as safe or unsafe are 

ignored since it is not known whether they should be safe or unsafe.  Features are 

generated for each pixel with a classification.  Since no previous training data exists, a 

decision tree is built using the pixels and classification the user just specified.   

The resulting classification of this decision tree is shown in figure 18.  In the left 

view in figure 18 everything is overlaid with red, indicating it was classified as unsafe.  

This is incorrect, but is as correct a classification as the machine learning can produce.  

At this point in the process the training data consists of examples of only one 

classification (unsafe).  There are no examples of any other classification.  In a sense, the 

classifier doesn‟t yet know that anything can be classified as safe, only unsafe, so 

everything is classified as the only classification known to exist.  In order for the 

classifier to be able to classify pixels as safe, it must have some examples of what safe 

pixels look like.  This is what the user is specifying by drawing blue ink in the middle of 

the left view in figure 18.  The user is specifying that the area of floor in the image is safe 

and that the robot should be allowed to travel there. 

The specification of a safe area works much the same as the specification of an 

unsafe area.  To specify a safe area the user presses the left mouse button down.  While 

the button is pressed, anywhere on the camera image that the user moves the cursor is 

marked as safe (indicated by blue).  When the user releases the left mouse button the 

current camera image and the user-specified classification are sent to the classifier as new 

training data, just like when an unsafe area was specified.  In the situation shown in the 
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figures above some training data already existed (when the user indicated that the orange 

area on the floor was unsafe), so the current training data is added to the existing training 

data.  A new decision tree is created that correctly classifies both the original training 

data and the new training data.   

The classification results of this new decision tree can be seen in figure 19.  It can 

be seen that the orange areas on the floor are correctly classified as unsafe while the floor 

itself is correctly classified as safe.  Even the orange area farther away is correctly 

classified as unsafe, even though it was never explicitly marked as unsafe by the user.  

This is one of the great strengths of the classification mechanism used in the safe/unsafe 

system – generalization.  Since one orange area was specified as unsafe, all orange areas 

will be classified as unsafe, assuming that the features for the pixels are similar enough to 

those of the pixels that were originally marked as unsafe.   

If a situation is ever encountered where an area is classified incorrectly, the user 

simply has to add more training data and a new classifier will be created that will 

correctly classify the area.  Adding the new training data and creating a new decision tree 

can be done in a matter of seconds (or less depending on how much area is specified by 

the user and how much previous training data there is).  The user gets feedback about 

how the classifier is working almost immediately and can correct errors almost as 

quickly.  This is one of the greatest advantages of the safe/unsafe system. 

 



www.manaraa.com

43 

 

 

Figure 20 – Basic classification process. 

 

4.3 Classifying Images 

This section describes how the classification process works in the safe/unsafe 

system.  The process is summarized in figure 20.  First, an image is obtained from the 

camera.  This image is passed to the classifier.  The classifier sends each pixel of the 

image that is to be classified to the decision tree.  The decision tree returns a class (safe 

or unsafe) for that pixel, depending on the past training data it was created with.  Once all 

the pixels have been classified, the resulting classified image can be sent to other parts of 

the system to determine what should be done based on which areas in the image are safe 

and which are unsafe. 

The safe/unsafe system as currently implemented does not classify every pixel of 

every image.  This is primarily for speed reasons.  The system can classify every pixel of 

every image, but then most of the computational resources of the system are spent on 

classification.  This leaves few resources available to actually react to those 

classifications.  A balance was found between the amount of information being classified 

and the system‟s ability to react.  As more computational resources become available in 
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the same form factor and as additional optimizations are made to the system, this will be 

less of an issue. 

The first optimization taken is that only the bottom two thirds of the image is 

classified.  The top third is always above the horizon.  Since the robot is unlikely to 

encounter many obstacles in the sky, this seems like a valid course to take.  The second 

optimization is that only every other pixel is classified.  There are virtually no obstacles 

that could impede the robot that would show up as only a single pixel in an image 

received from a camera mounted on the robot.  All obstacles are at least several pixels 

wide.  So no information about the general location of obstacles is lost.  In fact this can 

actually improve the accuracy of obstacle detection if there is significant noise in the 

classified image.  The third optimization is that only every other image received from the 

camera is classified.  The camera receives images fast enough when compared to the 

speed the robot travel at so that this optimization does not hinder the system‟s ability to 

avoid obstacles.  Enough information is classified far enough in advance that the system 

is able to make the necessary adjustments in order to avoid obstacles. 
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Chapter 5 – Map Generation 

 The map generation module of the safe/unsafe system receives a classified image 

that has been created by the safe/unsafe classifier.  This image indicates what parts of the 

robot‟s view are safe and which are unsafe.  The map generation module uses this 

information to create a map of the area around the robot.  This environment map shows 

unsafe areas (potential obstacles) in relation to the robot‟s position.  The map can be used 

to find a safe path from where the robot is to where the user wants it to go.  The path 

generation module is explained in the next chapter. 

 The main purpose of the environment map is to give the robot a memory about 

where it has been and what it has seen.  This is important for the following type of 

situation: the robot is traveling in an area with two obstacles.  The robot must turn to 

avoid the first obstacle.  This puts the second obstacle in the robot‟s path.  The robot 

might turn to avoid the second obstacle and put the first obstacle back in its path.  If the 

obstacles are too close the robot might not be able to see the first obstacle when it makes 

its second correction.  In this type of situation the robot would collide with the first 

obstacle and never know it.  The environment map allows the system to “remember” the 

location of the first obstacle so as not to collide with it while avoiding the second 

obstacle. 

 

5.1 Generating the Environment Map 

In order to perform the mapping from a classified image to an environment map, 

the system uses the same algorithms that are employed in the click-and-drive driving 



www.manaraa.com

46 

 

interface explained earlier.  The driving interface works by translating a point in camera 

space (the point where the user clicks) into a distance from the robot and a number of 

degrees away from where the robot is currently facing.  This effectively maps a point in 

camera space to a point on the floor in the robot‟s environment, which is what is required 

for the environment mapping algorithm. 

In order for the click-and-drive interface to function correctly, it must be properly 

calibrated.  This calibration also affects how accurately classified images are translated 

into an environment map.  The method of how this is accomplished by using several 

measured points and then linear interpolators for those points that aren‟t explicitly 

measured is detailed in the section on navigation interface in chapter three.  One of the 

figures from chapter three that describes this process is repeated in figure 21.  This same 

method of mapping pixels in the camera space to distances and angles that are used to 

drive the robot is also used in creating an environment map.  This method is not 

completely accurate but is sufficiently accurate to be not only functional but effective as 

well. 
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Figure 21 – Mapping a pixel seen to a distance from the robot and an angle from the center of view 

(top view). 

The algorithm for mapping points from a classified image to the environment map 

is shown below. 

 Get x and y coordinates of classified pixel.  These coordinates are in camera 

space 

 Use the horizontal linear interpolator to find angle from robot‟s center of 

view.  This angle is in environment space  

 Use the vertical linear interpolator to find distance from robot‟s current 

location.  This distance is in environment space 

 Use trigonometric functions to convert the distance from the robot and the 

angle from its center of view to forward and horizontal components 

 Add these components to the robot‟s current position to get absolute 

coordinates on the environment map 
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One of the benefits of obtaining a safe/unsafe mapping of the robot‟s 

environment, other than getting useful obstacle avoidance information, is the ability to 

give new types of commands.  The system allows the user to click on a point on the map 

to specify a goal location for the robot.  First, this allows goal locations to be given that 

are not currently viewable by the robot‟s camera.  Second, and more importantly, this 

allows commands of the type “Go to the other side of that obstacle” to be given.  The 

user can give commands with the normal interface that will result in similar behavior of 

the robot, but this new method results in a more intuitive way to give this type of 

command.  For example, in figure 22 the yellow area on the floor is being classified as 

unsafe.  The environment map is shown in the left-most pane of the figure.  The red area 

in the environment map represents the yellow area on the floor, but in environment space 

instead of in camera space.  The white circle on the environment map represents the 

robot.  The area inside the two gray lines represents the area that is currently viewable by 

the robot‟s camera.  With the environment map the user is now able to see the entire area 

around the robot.  The user can now click above the red area on the environment map to 

tell the robot to go to that location.  The meaning of this command is “go to the other side 

of the obstacle”.  A command that would result in the same behavior could be given in 

the normal navigation interface, but it would have a different meaning.  It would mean 

“drive forward x inches”.  Driving that distance just happens to be on the other side of the 

obstacle. 
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Figure 22 – Simple obstacle classification and accompanying environment map. 

It should be noted that the classified image to environment map mapping 

algorithm cannot distinguish between long, flat objects and tall objects (using a single 

image).  A tall unsafe object will be treated as though it were a long, flat unsafe object 

thus covering more area in the environment map than it the object does in real life.  This 

is acceptable for two reasons.  First, it is a false positive in regards to unsafeness.  This 

may cause the system to avoid an area that in reality doesn‟t need to be avoided, but it 

does not cause the system to enter an area that is unsafe.  The system errs on the side of 

caution.  Second, when the robot moves past the tall, unsafe object it will be able to see 

that the area originally classified as unsafe is actually safe and the environment map can 

be updated with the new information.  So typically the false positive is only temporary 

anyway.  An example of such a situation is shown in figure 23.  The box is being 

classified as unsafe.  In the environment map this is being translated into a very large 

unsafe area.  However, as the robot moves around the box the area that is being 

incorrectly classified as unsafe will get correctly classified as safe, and the robot will be 

able to travel behind the box if the user directs it to. 
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Figure 23 - Classification of tall obstacle. 

 

5.2 Updating the Environment Map 

In order for the map to be meaningful it must constantly be updated as the robot 

gains new information.  It must also remember what the robot has already seen but can no 

longer directly observe.  The map is stored as an array of “safeness” values.  The value 

stored at each position on the map can range between 0 and 255.  The safer a point is, the 

lower the number being stored, and thus the higher its “safeness” value.  Each time a 

point on the map is identified as safe the value in the map reduced by 5.  To help reduce 

the effects of noise, the points around the point classified are also reduced (though only 

by 2 in this case).  The same process is followed when a point is identified as unsafe, 

except the values are increased at the primary point by 10 and at the surrounding points 

by 5.  This essentially gives more weight to unsafe classifications than it does to safe 

classifications.  This was done so that the system can react more quickly to new unsafe 

areas that are discovered.  The map is continually updated as new images are received 

from the camera and classified. 

The algorithm for updating the environment map with data from a new classified 

image is below. 

 For each pixel in the classified image 
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o Map the pixel to environment space 

o If the pixel is safe 

 Decrease the value at the point on the environment map by 

5 

 Decrease the values at the four neighbors of the point by 2 

o If the pixel is unsafe 

 Increase the value at the point on the environment map by 

10 

 Increase the values at the four neighbors of the point by 5 

 

The map must not only be updated as new images are received, but also as the 

robot moves.  The paradigm chosen for this was to have the robot‟s position on the map 

remained fixed while the map translates and rotates around the robot as the robot drives 

and turns.  Since with the current control model the robot can only move forwards and 

since on the map the robot is always facing upwards only down translations of the map 

must be accounted for.  This simply moves values on the map to points lower (higher Y 

values, since the origin is in the upper left-hand corner) on the map.  The system knows 

when to translate the map and how far to translate it based on feedback it receives from 

the Javelin board.  The Javelin board tells the system how far forward the robot has 

moved.  To rotate the map, a simple backmapping algorithm is used with the robot as the 

point of rotation.  Again, when to rotate and by how much is determined by feedback 

from the Javelin board.  This dead reckoning approach can lead to inaccuracy in terms of 

reaching the goal position (this is discussed in more detail in chapter 7).  However, the 
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obstacle avoidance parts of the system are affected very little by the inaccuracies of dead 

reckoning.  This is because the environment map is update so frequently with new data 

about the environment and the obstacles in it. 
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Chapter 6 – Path Traversal 

 

 

Figure 24 – User interface with path displayed (left-most pane). 

The purpose of creating an environment map is so that the location of obstacles 

relative to the position of the robot may be determined.  When the locations of obstacles 

have been determined then the obstacles may be avoided.  Avoiding obstacles is the main 

goal of the safe/unsafe system.  The system uses the environment map to find a path, such 

as the one shown in figure 19, from where the robot currently is to where the user told it 

to go, that goes around obstacles rather than through them. 

The first step in using the environment map for navigation is to generate a path 

from the robot‟s current position to the place it is trying to go.  When the user gives the 

robot a command, the location the user specified is determined in the environment map 

using the same mapping that is used to map a classified image to the environment map.  

After finding the goal location, a path between the robot‟s location on the environment 

map and the goal location on the environment map can be found.  The second step is 

generating the commands necessary to cause the robot to follow the path that has been 

generated.  If the direction the robot is currently traveling will take it too far off the path 

the appropriate turn commands must be given to ensure that it stays on the path.  If the 
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robot reaches the goal then the goal is removed.  When the user gives the robot a new 

command, the goal location is recomputed, and the old goal location is discarded.  The 

main components of this process are shown in figure 25. 

 

 

Figure 25 – Basic path traversal algorithm. 

 

6.1 Path Generation 

The path from the robot‟s location to the goal location is computed using a best-

first search [PEAR84].  Many search and path planning algorithms exist [RUSS03], but a 

best-first search was chosen because the information available to the system lends itself 

well to such a search (the robot and goal locations are known as well as safeness 

information about all locations between the robot and the goal).  Each node in the search 

represents a position on the environment map.  A list of all the nodes on the current 
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search frontier is kept, sorted according to a heuristic value at each node.  The heuristic 

value is computed from the distance of the node to the goal location combined with the 

“unsafeness” of that node.  The unsafeness of a node is determined by finding the average 

unsafe value in an area around the node in the environment map.  To make computation 

faster, an integral image of the environment map is generated before finding a path 

through it.  This allows the algorithm to compute an arbitrarily sized unsafeness value at 

any node in constant time.  The unsafeness value over an area is used, as opposed to the 

value just at the node in question, to take into account the fact that the physical size of the 

robot takes up an area on the environment map, as opposed to a single location.   

When the unsafeness value is found, it is multiplied by a weighting factor and 

then added to the distance of the node to the goal location.  This combined value, distance 

and unsafeness value, is the heuristic value for the node.  The actual equation is abs(xrobot 

– xgoal) + abs(yrobot – ygoal) + unsafeness value * weight factor.  This weight factor was 

used to increase importance of the unsafeness of a node when determining whether it 

should be used as part of the path to the goal or not.  Prior to adding a weighting factor 

the system would sometimes generate a path that led the robot through a very unsafe area 

because that was the path with the lowest heuristic.  Different weight values were not 

tested extensively, but it was found empirically that a value of 2.0 worked well.  A value 

of 1.0 to 2.0 resulted in the system sometimes still generating a path that led through an 

unsafe area.  A value of 2.0 or greater resulted in the system generating a path that 

avoided unsafe areas, but often took the robot much farther away from obstacles that it 

needed to go.  One situation where this became especially important was when there were 

two obstacles fairly close together but with enough room for the robot to travel between 
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them.  In type of situation if the weight factor was set too high then the system would not 

generate a path that led between the two obstacles, even if there was enough room for the 

robot to safely pass between them. 

Once the heuristic value has been computed for the node, the node is put into the 

list of frontier nodes, and the list is sorted so that nodes with lower heuristics come first 

in the list.  When a new node is taken from the list to be processed, it is taken from the 

front of the list (so it has the lowest heuristic).  The heuristics for that node‟s neighbors 

are computed and the neighbor nodes are added to the list (if the nodes haven‟t already 

been visited).  The top five neighbors are added to the list (as opposed to all surrounding 

eight) both to reduce the number of nodes being searched and to keep the algorithm from 

generating paths that would force the robot to have to backtrack.  The search ends when 

the node containing the goal location is found.  To help keep the system responsive, a 

timeout is also used.  If finding the path takes over a certain amount of time, then instead 

of returning a complete path to the goal, the algorithm returns a path from the robot‟s 

location to the node that the algorithm has processed that is closest to the goal.  The 

timeout is not normally used, but can be helpful in keeping the robot moving towards the 

goal in situations where the environment map is particularly difficult to traverse. 

Sometimes the path needs to be regenerated.  This is done under several different 

circumstances.  First, if while following a certain path the robot receives a new command 

from the user, the path is regenerated since the goal location has changed.  Second, if the 

area around the robot has changed significantly in safeness the path is recomputed.  

Whether or not a significant change has occurred is determined by computing the 

difference in the sum of the safeness values around the robot when the robot‟s current 
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path was initially computed and the current sum of the safeness values around the robot.  

If the difference between these two sums is great enough (a difference of 8500 was 

determined empirically for the safe/unsafe system) then the path is recomputed.  It could 

be that when the path was originally computed then an area appeared safe, but as the 

robot got closer more information was gathered, and it was determined that an area was 

actually unsafe.  If this is the case then the path should be recomputed so the new 

information can be taken into account.  Third, since the map rotation algorithm is 

imperfect multiple rotation operations can cause the path to slowly degrade.  If the path 

has degraded sufficiently it is regenerated.  This is done by determining how many points 

in the environment map around the robot are marked as part of the path.  If the number is 

too small then the path is regenerated.  A special case of this is if there are no path points 

found around the robot.  This can happen if the path has degraded or if the robot has 

somehow gotten off the path.  The path is regenerated in this case also.  This will result in 

a new path from the robot‟s current location to the goal, using the most up to date 

information available from the environment map. 

 

6.2 Path Following 

After generating a safe path based on the environment map, the robot may use 

that path to help it navigate.  In order to do this the robot must be able to follow the path 

that has been generated.  The part of the safe/unsafe system that is responsible for 

following the path uses a two window approach.  These two windows are fixed areas on 

the environment map directly in front of the robot‟s position on the map.  If the path is 

not found in either of these areas then it is regenerated (as discussed above).  Since the 
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start point of path generation is inside the first window this won‟t result in infinite path 

regeneration. 

The algorithm employed for both windows is the same.  The point in the window 

that is farthest away from the robot and contains part of the path is found.  The angle 

from the robot‟s current heading to this point is computed.  This angle may be used to 

generate a turn command to ensure the robot stays on the path.  The angle from the 

closest window is always computed first.  If the angle for the first window is too large or 

too small, the angle from the second window will be computed and used.  This is to help 

ensure that the path the robot ultimately takes is relatively smooth.  The path generated 

can contain a lot of small direction changes.  Typically all of these small turns do not 

need to be turned into commands, but rather the overall course of the path must be 

followed instead.  Finding the farthest path point and using the two-windowed approach 

help the robot to follow the overall course and ignore all the minor variations in the path.  

An example of a path that would require many small turn commands to follow exactly is 

shown in figure 26.  The jagged part of the path directly in front of the robot changes 

directions many times in a short distance.  The purpose of using a windowed approach is 

to avoid performing many small turns and instead follow the general direction of the 

path. 
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Figure 26 – Path requiring many small turns to follow exactly. 

Figures 27 through 29 show examples where the two different windows are used.  

The windows are shown as green rectangles (they are not part of the normal interface).  

Figure 20 shows an example of when the angle from the first window will be used.  In 

figure 21 the angle from the second window will be used.  This is because the angle from 

the first window is too small (zero in this case).  In this case having the robot turn now 

instead of waiting until it is further along the path will help it to avoid colliding with the 

obstacle.  Figure 22 shows an example where the angle from the first window is too large.  

According to the path, the robot should make almost a 90-degree turn to the right in order 

to stay on the path.  However, a smaller angle will result in a more fluid movement 

around the obstacle.  Therefore the angle from the second window will be used. 
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Figure 27 – Situation where first window will be used to determine angle adjustment. 

 

 

Figure 28 – Situation where second window will be used to determine angle adjustment. 
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Figure 29 – Situation where second window will be used to determine angle adjustment. 

When it has been determined that a turn must be made in order for the robot to 

stay on the path, a turn command is generated and sent to the Javelin board.  After the 

robot finishes turning a second command (a drive command) is given.  This is to make 

the robot start advancing towards the goal again.  If the robot is ever at the goal (a small 

margin of error (5 inches) is used in determining whether or not the robot is actually at 

the goal) then a stop command is generated, and no further path generation or move 

commands take place until the user gives a new command. 
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Chapter 7 – Evaluation 

 In evaluating the safe/unsafe system, there are many possible metrics that could 

be used.  For the purposes of this thesis two main areas of evaluation are taken into 

consideration.  The first evaluation metric is whether or not the system can avoid 

obstacles.  The whole purpose of the system is to automatically avoid obstacles, thus 

allowing the user to concentration on other tasks.  If the system cannot avoid obstacles 

then it is not effective. 

 The second evaluation metric is how close the robot gets to where the user told it 

to go.  If the user tells the robot to go to a particular point and the robot does not go to 

that point, but does not run into any obstacles, then the system is still mildly useful, but 

not nearly as useful as it could be.  It is impossible for the robot to go to the exact 

location the user specified (due to inaccuracies in the goal location specification interface 

and the inaccuracies of the robot‟s physical components), but it should get close.  Exactly 

what “close” means can depend on what the robot is to be used for.  Traversing a 

minefield without driving over any of the mines might require a much more restrictive 

definition of “close” than might a wilderness reconnaissance operation. 
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7.1 Test Description 

 

 

Figure 30 – Overhead representation of four main test situations. 
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Figure 31 – Situation with no obstacles. 

 

 

Figure 32 – Situation with single, inline obstacle. 
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Figure 33 – Situation with single, offset obstacle. 

 

 

Figure 34 – Situation with double, offset obstacles. 
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Figure 35 – Situation with double, inline obstacles. 

 To test the system, four different situations were used.  These four situations are 

diagrammed in figure 30 and pictured in figures 32 through 35.  While these test 

situations don‟t represent all possible real world situations, they do represent a large 

percentage of situations commonly encountered.  In the first of these test situations the 

robot is instructed to drive in a straight line, and there is one obstacle in its path.  This is 

the single, inline obstacle situation shown in figure 32.  The robot has to avoid the one 

obstacle to get to the goal specified.  In the second situation the robot is again instructed 

to drive in a straight line, but this time the obstacle is close to the robot‟s path but not 

directly in it.  This is the single, offset obstacle situation shown in figure 33.  The robot 

doesn‟t need to make any corrections in order to reach the specified goal.  In the third 

situation there are two obstacles.  The goal the robot is given is between the two obstacles 

and slightly to one side.  The robot can‟t go straight to the goal without running into one 

of the obstacles.  This is the double, offset obstacles situation shown in figure 34.  In the 

fourth situation there are two obstacles, both in the path of the robot.  Both of the 

obstacles must be avoided, but in opposite directions.  This is the double, inline obstacles 
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situation shown in figure 35.  In all situations, the distance from the robot‟s starting 

position to the desired goal location was 252 inches.  In all situations a single drive 

command was given to the robot telling it to go to the desired goal location.  All other 

movement after that was controlled by the system.  Each situation was traversed seven 

times.  The results of each run were recorded and the average was computed. 

 In order to determine the inherent inaccuracy of the system, a fifth situation was 

also tested, a situation with no obstacles as shown in figure 31.  The robot starting 

position and goal position were the same distance from each other as specified above.  

The robot was given a single drive forward command with the intent to drive from the 

starting position to the goal position.  The same measurements were recorded, as with the 

other situations, though for the no-obstacle situation recording the number of corrections 

and collisions is not meaningful since there are no obstacles.  The results of this situation 

are in figure 36. 

 

 No-Obstacle Situation 

 Corrections Distance to Goal Collisions 

 0 20 0 

 0 28 0 

 0 29 0 

 0 29 0 

 0 34 0 

 0 34 0 

 0 42 0 

Avg 0 30.9 0 

Figure 36 – Results of no-obstacle situation.  Distances are in inches. 

 The distance to the goal in this situation can be accounted for by several factors.  

The first is the inaccuracy of the goal specification system.  Since the distance to the goal 

is specified by clicking on a pixel and the number of pixels is limited, especially as the 
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distance to the goal increases, it is impossible to tell the robot to go exactly 252 inches.  

The second factor is that while the robot is driving its wheels tend to slip.  This causes the 

system to think that it has driven farther that it really has.  This is a cumulative effect, so 

the farther the distance the greater the effect.  The third factor, which is related to wheel 

slippage, is that the robot does not always drive straight.  Sometimes one wheel turns 

slightly faster than the other.  Again, this effect is cumulative over distance, so for short 

distances it is usually not significant, but can become so over long distances.  The 

distance to the goal for the no-obstacle situation is a measure of all of these factors 

combined. 

 To measure the performance of the safe/unsafe system, several measurements 

were taken.  The first, and most important, was how many times the robot collided with 

obstacles.  This measurement tells whether or not the robot is generally effective at 

avoiding obstacles.  The second measurement was how far the robot ended up from the 

goal originally specified.  This measurement gives an indication of how close the robot 

can get to the specified goal given different levels of complexity in environment and 

path.  The third measurement was how many corrective turns the robot had to make while 

navigating the situation.  This measurement gives a feeling of how complicated the path 

was and consequently, to a degree, how complicated the environment was. 
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7.2 Results 

 Single, Inline Obstacle Situation   Single, Offset Obstacle Situation 

 Corrections Distance to Goal Collisions   Corrections Distance to Goal Collisions 

 8 4 0   0 12 0 

 3 31 0   0 18 0 

 6 22 0   0 20 0 

 13 26 0   3 10 0 

 12 16 0   0 47 0 

 13 28 0   0 44 0 

 8 21 0   3 13 0 

Avg 9 21.1 0  Avg 0.9 23.4 0 

         

 Double, Offset Obstacle Situation   Double, Inline Obstacle Situation 

 Corrections Distance to Goal Collisions   Corrections Distance to Goal Collisions 

 2 20 0   4 36 1 

 2 20 0   6 30 0 

 2 26 0   2 42 0 

 3 24 0   5 43 0 

 1 30 0   7 30 0 

 1 27 0   12 26 0 

 1 26 0   6 26 0 

Avg 1.7 24.7 0  Avg 6 33.3 0.1 

Figure 37 – Results of four main situations.  Total distance for all 

situations is 252 inches.  Distances are in inches. 

 As can be seen in figure 37, on all the runs of all the situations the robot only 

collided with one obstacle on one run.  This was on one of the runs of situation 4, which 

is arguably one of the hardest situations.  There were no collisions on any other runs of 

fourth situation or on any runs of any of the other situations.  For the primary goal of the 

safe/unsafe system of avoiding obstacles, this qualifies as a success. 

 Also shown in figure 37, in the first through third situations the average distance 

to the specified goal was about twenty inches.  In the fourth situation the average distance 

to the goal was slightly higher at about thirty inches.  However, the fourth situation is one 

of the more complex situations, so slightly less accuracy is to be expected.  By comparing 

figure 36 and figure 37, it can be noted that for the first through third situations, the 

safe/unsafe system actually got closer to the desired goal location than simply driving 
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straight to the goal.  This result makes sense if the inaccuracy factors discussed in the 

description of the no-obstacle situation are recalled.  Several of the inherent inaccuracies 

of the system are cumulative over distance.  In the no-obstacle situation, the robot had to 

travel the greatest uninterrupted distance of any of the situations, so the effects of the 

cumulative inaccuracies were most pronounced in this situation.  In the other situations, 

the total distance was divided up into shorter distances (between corrective turns) so the 

effect of these inaccuracies was less when using the safe/unsafe system.  The distance to 

the goal in the fourth situation was greater than in the no-obstacle situation, but not by a 

significant amount.  It can be concluded that the accuracy of the system, in terms of 

reaching the goal location, is generally not worse when using safe/unsafe and can actually 

be better. 

 The average number of corrections increases with the complexity of the situation.  

The only notable exception to this is in the single, inline obstacle situation.  More 

corrective turns were issued in this situation on average than any other situation even 

though it is not necessarily the most complex environment.  Since the system was able to 

avoid the obstacle successfully and the final distance to the goal specified was acceptable, 

the increased number of corrections in this situation is not a significant issue.  If fewer 

corrective turns were desired the system could be adjusted. 
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Chapter 8 – Conclusion 

 This thesis has detailed the workings and evaluation of the safe/unsafe system, the 

user interface of which is shown in figure 31.  This system uses interactive machine 

learning to get input from the user, which is used to learn to detect obstacles.  User input 

can be obtained in real time as new environment elements are encountered.  The system 

then uses information about the obstacles to perform effective obstacle avoidance and 

path following. 

 The trainable obstacle detection of the system uses a relatively large number of 

features enabling the system to be used in a wide variety of circumstances.  Due to the 

use of decision trees and integral images, the system can use this large number of features 

and still have fast training times.  And since only the features that are actually used are 

computed during classification the system is able to remain interactive. 

 The system uses the safe/unsafe classification to generate a map of the robot‟s 

environment.  This environment map is generated and updated based on dynamic 

classifications.  The map results in useful data that can be used to effectively avoid 

obstacles while traveling to a goal specified by the user. 
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Figure 38 – User interface of the safe/unsafe system showing all three main components (navigation, 

safe/unsafe specification and environment mapping). 

 There are many possible areas of further study, based on the work presented in 

this thesis.  A few are listed here.  One possible area would be in the use of multiple 

robots.  The ability to control multiple robots and have them share classification 

information was implemented in the safe/unsafe system but was not tested.  The sharing 

of classification information between robots could result in more robust classifiers.  The 

ability to share classification information might also be more effective, in that training 

one robot would train all the others, thus making the training of multiple robots less time 

consuming. 

 A second possible area of continued study would be the fusing of the obstacle 

detection portion of the safe/unsafe system with other sensor systems such as sonar.  

Using two types of sensors could allow for more accurate environment maps and better 

obstacle avoidance.  However, a way to combine the two (or more) sensor systems in an 

effective manner would need to be developed. 
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 A third area of continued study would be to user test the safe/unsafe system.  User 

testing could help determine if the system helps the user more effectively navigate the 

robot and if so, how much the system helps.  If multiple robots are being tested then 

fanout tests [OLSE04] [CRAN05] could be used to evaluate how the system affects the 

user‟s ability to control multiple robots. 

 A fourth area would be to add to the system the ability to recognize desirable 

objects.  The system currently only identifies two possible classifications: safe and 

unsafe.  Since the learning algorithm used can use an arbitrary number of possible 

classifications, a third classification could easily be added.  This classification could be 

used to identify objects that are visually distinct from the rest of the robot‟s environment 

that the user would like to be alerted to when the robot sees them.  A possible example of 

this might be a robot performing search and rescue in a forest.  Obviously, the trees 

should be classified as unsafe and the forest floor should be classified as safe.  The third 

classification could be used if it is known that the person being searched for is wearing a 

red shirt.  When a red shirt is seen by the robot, the user could be alerted (audio or visual 

alert through the user interface) that the robot has seen something that looks like what is 

being searched for.   

 A fifth area in which research could continue would be to use alternate map 

generation techniques.  One possibility is in the use of different path planning algorithms.  

As stated previously, there are many path-planning algorithms.  The safe/unsafe system 

was implemented using a generic best-first search with two values combined (distance to 

the goal and unsafeness level) to form a single heuristic.  The system might benefit from 

the use of other path-planning algorithms.  It is also possible that some algorithms might 
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work better in some situations, while others work better in other situations.  Another 

possibility would be to use a more sophisticated map generation algorithm, such as 

particle filters [THRU01]. 

 

 Traditional robot control systems have limitations.  The safe/unsafe system solves 

some of those problems.  It allows a robot to detect obstacles based solely on visual 

information, thus removing the limitation of only being able to detect “positive space” 

obstacles.  The system is also easily user trainable.  This allows the system to be used in a 

wide variety and situations and to adapt to new situations quickly.  Finally, the 

safe/unsafe system has been shown to be effective at avoiding obstacles while traveling 

to a user specified goal. 
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Appendix – List of Features 
All features are generated for a specific pixel.  For the purposes of describing these 

features, the pixel in question will be referred to by having coordinates of x and y. 

 

Basic Features 

R1 – Red value at (x, y) 

G1 – Green value at (x, y) 

B1 – Blue value at (x, y) 

R3 – Sum of all red values in a 3x3 area with (x, y) at its center 

G3 – Sum of all green values in a 3x3 area with (x, y) at its center 

B3 – Sum of all blue values in a 3x3 area with (x, y) at its center 

R9 – Sum of all red values in a 9x9 area with (x, y) at its center 

G9 – Sum of all green values in a 9x9 area with (x, y) at its center 

B9 – Sum of all blue values in a 9x9 area with (x, y) at its center 

R27 – Sum of all red values in a 27x27 area with (x, y) at its center 

G27 – Sum of all green values in a 27x27 area with (x, y) at its center 

B27 – Sum of all blue values in a 27x27 area with (x, y) at its center 

R81 – Sum of all red values in an 81x81 area with (x, y) at its center 

G81 – Sum of all green values in an 81x81 area with (x, y) at its center 

B81 – Sum of all blue values in an 81x81 area with (x, y) at its center 

A1 – Max of R1, G1 and B1 

A3 – Max of R3, G3, and B3 

A9 – Max of R9, G9 and B9 

A27 – Max of R27, G27 and B27 

A81 – Max of R81, G81 and B81 

I1 – Min of R1, G1 and B1 

I3 – Min of R3, G3 and B3 

I9 – Min of R9, G9 and B9 

I27 – Min of R27, G27 and B27 

I81 – Min of R81, G81 and B81 

 

Averaging Features 

C-AVE-S – Average C (red, green or blue) values over an SxS area centered on (x, y) 

Valid values of S are 27, 81, 100, 144 and 225 for a total of 15 features 

 

Differencing Features of Same Size 

DR1G1 – Difference between R1 and G1 

DR3G3 – Difference between R3 and G3 

DR9G9 – Difference between R9 and G9 

DR27G27 – Difference between R27 andG27 

DR81G81 – Difference between R81 and G81 
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DG1B1 – Difference between G1 and B1 

DG3B3 – Difference between G3 and B3 

DG9B9 – Difference between G9 and B9 

DG27B27 – Difference between G27 and B27 

DG81B81 – Difference between G81 and B81 

DB1R1 – Difference between B1 and R1 

DB3R3 – Difference between B3 and R3 

DB9R9 – Difference between B9 and R9 

DB27R27 – Difference between B27 and R27 

DB81R81 – Difference between B81 and R81 

DA1R1 – Difference between A1 and R1 

DA3R3 – Difference between A3 and R3 

DA9R9 – Difference between A9 and R9 

DA27R27 – Difference between A27 and R27 

DA81R81 – Difference between A81 and R81 

DA1G1 – Difference between A1 and G1 

DA3G3 – Difference between A3 and G3 

DA9G9 – Difference between A9 and G9 

DA27G27 – Difference between A27 and G27 

DA81G81 – Difference between A81 and G81 

DA1B1 – Difference between A1 and B1 

DA3B3 – Difference between A3 and B3 

DA9B9 – Difference between A9 and B9 

DA27B27 – Difference between A27 and B27 

DA81B81 – Difference between A81 and B81 

DR1I1 – Difference between R1 and I1 

DR3I3 – Difference between R3 and I3 

DR9I9 – Difference between R9 and I9 

DR27I27 – Difference between R27 and I27 

DR81I81 – Difference between R81 and I81 

DG1I1 – Difference between G1 and I1 

DG3I3 – Difference between G3 and I3 

DG9I9 – Difference between G9 and I9 

DG27I27 – Difference between G27 and I27 

DG81I81 – Difference between G81 and I81 

DB1I1 – Difference between B1 and I1 

DB3I3 – Difference between B3 and I3 

DB9I9 – Difference between B9 and I9 

DB27I27 – Difference between B27 and I27 

DB81I81 – Difference between B81 and I81 

 

Differencing Features of Different Size 

DR1R3 – Difference between R1 and R3 

DR1R9 – Difference between R1 and R9 

DR1R27 – Difference between R1 and R27 
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DR1R81 – Difference between R1 and R81 

DR3R9 – Difference between R3 and R9 

DR3R27 – Difference between R3 and R27 

DR3R81 – Difference between R3 and R81 

DR9R27 – Difference between R9 and R27 

DR9R81 – Difference between R9 and R81 

DR27R81 – Difference between R27 and R81 

DG1G3 – Difference between G1 and G3 

DG1G9 – Difference between G1 and G9 

DG1G27 – Difference between G1 and G27 

DG1G81 – Difference between G1 and G81 

DG3G9 – Difference between G3 and G9 

DG3G27 – Difference between G3 and G27 

DG3G81 – Difference between G3 and G81 

DG9G27 – Difference between G9 and G27 

DG9G81 – Difference between G9 and G81 

DG27G81 – Difference between G27 and G81 

DB1B3 – Difference between B1 and B3 

DB1B9 – Difference between B1 and B9 

DB1B27 – Difference between B1 and B27 

DB1B81 – Difference between B1 and B81 

DB3B9 – Difference between B3 and B9 

DB3B27 – Difference between B3 and B27 

DB3B81 – Difference between B3 and B81 

DB9B27 – Difference between B9 and B27 

DB9B81 – Difference between B9 and B81 

DB27B81 – Difference between B27 and B81 

DR1G3 – Difference between R1 and G3 

DR1G9 – Difference between R1 and G9 

DR1G27 – Difference between R1 and G27 

DR1G81 – Difference between R1 and G81 

DR3G9 – Difference between R3 and G9 

DR3G27 – Difference between R3 and G27 

DR3G81 – Difference between R3 and G81 

DR9G27 – Difference between R9 and G27 

DR9G81 – Difference between R9 and G81 

DR27G81 – Difference between R27 and G81 

DG1B3 – Difference between G1 and B3 

DG1B9 – Difference between G1 and B9 

DG1B27 – Difference between G1 and B27 

DG1B81 – Difference between G1 and B81 

DG3B9 – Difference between G3 and B9 

DG3B27 – Difference between G3 and B27 

DG3B81 – Difference between G3 and B81 

DG9B27 – Difference between G9 and B27 

DG9B81 – Difference between G9 and B81 
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DG27B81 – Difference between G2 and B81 

DB1R3 – Difference between B1 and R3 

DB1R9 – Difference between B1 and R9 

DB1R27 – Difference between B1 and R27 

DB1R81 – Difference between B1 and R81 

DB3R9 – Difference between B3 and R9 

DB3R27 – Difference between B3 and R27 

DB3R81 – Difference between B3 and R81 

DB9R27 – Difference between B9 and R27 

DB9R81 – Difference between B9 and R81 

DB27R81 – Difference between B27 and R81 

DA3R1 – Difference between A3 and R1 

DA9R1 – Difference between A9 and R1 

DA27R1 – Difference between A27 and R1 

DA81R1 – Difference between A81 and R1 

DA9R3 – Difference between A9 and R3 

DA27R3 – Difference between A27 and R3 

DA81R3 – Difference between A81 and R3 

DA27R9 – Difference between A27 and R9 

DA81R9 – Difference between A81 and R9 

DA81R27 – Difference between A81 and R27 

DA3G1 – Difference between A3 and G1 

DA9G1 – Difference between A9 and G1 

DA27G1 – Difference between A27 and G1 

DA81G1 – Difference between A81 and G1 

DA9G3 – Difference between A9 and G3 

DA27G3 – Difference between A27 and G3 

DA81G3 – Difference between A81 and G3 

DA27G9 – Difference between A27 and G9 

DA81G9 – Difference between A81 and G9 

DA81G27 – Difference between A81 and G27 

DA3B1 – Difference between A3 and B1 

DA9B1 – Difference between A9 and B1 

DA27B1 – Difference between A27 and B1 

DA81B1 – Difference between A81 and B1 

DA9B3 – Difference between A9 and B3 

DA27B3 – Difference between A27 and B3 

DA81B3 – Difference between A81 and B3 

DA27B9 – Difference between A27 and B9 

DA81B9 – Difference between A81 and B9 

DA81B27 – Difference between A81 and B27 

DR1I3 – Difference between R1 and I3 

DR1I9 – Difference between R1 and I9 

DR1I27 – Difference between R1 and I27 

DR1I81 – Difference between R1 and I81 

DR3I9 – Difference between R3 and I9 
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DR3I27 – Difference between R3 and I27 

DR3I81 – Difference between R3 and I81 

DR9I27 – Difference between R9 and I27 

DR9I81 – Difference between R9 and I81 

DR27I81 – Difference between R27 and I81 

DG1I3 – Difference between G1 and I3 

DG1I9 – Difference between G1 and I9 

DG1I27 – Difference between G1 and I27 

DG1I81 – Difference between G1 and I81 

DG3I9 – Difference between G3 and I9 

DG3I27 – Difference between G3 and I27 

DG3I81 – Difference between G3 and I81 

DG9I27 – Difference between G9 and I27 

DG9I81 – Difference between G9 and I81 

DG27I81 – Difference between G27 and I81 

DB1I3 – Difference between B1 and I3 

DB1I9 – Difference between B1 and I9 

DB1I27 – Difference between B1 and I27 

DB1I81 – Difference between B1 and I81 

DB3I9 – Difference between B3 and I9 

DB3I27 – Difference between B3 and I27 

DB3I81 – Difference between B3 and I81 

DB9I27 – Difference between B9 and I27 

DB9I81 – Difference between B9 and I81 

DB27I81 – Difference between R1G1 and I81 

 

Gradient Features (Vertical and Horizontal) 

V-C-S – Sum of C (red, green or blue) values from x – (S / 2) to x and y – (S / 2) and y + 

(S / 2) minus the sum of C (red, green or blue) values from x to x + (S / 2) and y – (S / 2) 

and y + (S / 2) 

H-C-S – Sum of C (red, green or blue) values from x – (S / 2) to x + (S / 2) and y – (S / 2) 

and y minus the sum of C (red, green or blue) values from x – (S / 2) to x + (S / 2) and y 

and y + (S / 2) 

VA-S – Max of VR-S, VG-S and VB-S 

HA-S – Max of HR-S, HG-S and HB-S 

Valid values of S are 2, 4, 8, 16, 32 and 64 for a total of 48 features 

 

Differenced Averages 

DRA27 – Difference between RAVE27 and average of the red values in a 9x9 area 

centered on (x, y – 10) 

DRA81 – Difference between RAVE81 and average of the red values in a 27x27 area 

centered on (x, y – 40) 

DRA100 – Difference between RAVE100 and average of the red values in a 27x27 area 

centered on (x, y – 50) 
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DRA144 – Difference between RAVE144 and average of the red values in a 27x27 area 

centered on (x, y – 72) 

DRA225 – Difference between RAVE225 and average of the red values in a 27x27 area 

centered on (x, y – 112) 

DGA27 – Difference between GAVE27 and average of the red values in a 9x9 area 

centered on (x, y – 10) 

DGA81 – Difference between GAVE81 and average of the red values in a 27x27 area 

centered on (x, y – 40) 

DGA100 – Difference between GAVE100 and average of the red values in a 27x27 area 

centered on (x, y – 50) 

DGA144 – Difference between GAVE144 and average of the red values in a 27x27 area 

centered on (x, y – 72) 

DGA225 – Difference between GAVE225 and average of the red values in a 27x27 area 

centered on (x, y – 112) 

DBA27 – Difference between BAVE27 and average of the red values in a 9x9 area 

centered on (x, y – 10) 

DBA81 – Difference between BAVE81 and average of the red values in a 27x27 area 

centered on (x, y – 40) 

DBA100 – Difference between BAVE100 and average of the red values in a 27x27 area 

centered on (x, y – 50) 

DBA144 – Difference between BAVE144 and average of the red values in a 27x27 area 

centered on (x, y – 72) 

DBA225 – Difference between BAVE225 and average of the red values in a 27x27 area 

centered on (x, y – 112) 

DAVER225G225 – Difference between RAVE225 and GAVE225 

DAVER225B225 – Difference between RAVE225 and BAVE225 

DAVEG225B225 – Difference between GAVE225 and BAVE225 

DAVER144G144 – Difference between RAVE144 and GAVE144 

DAVER144B144 – Difference between RAVE144 and BAVE144 

DAVEG144B144 – Difference between GAVE144 and BAVE144 

DAVER100G100 – Difference between RAVE100 and GAVE100 

DAVER100B100 – Difference between RAVE100 and BAVE100 

DAVEG100B100 – Difference between GAVE100 and BAVE100 

DAVER81G81 – Difference between RAVE81 and GAVE81 

DAVER81B81 – Difference between RAVE81 and BAVE81 

DAVEG81B81 – Difference between GAVE81 and BAVE81 

DAVER27G27 – Difference between RAVE27 and GAVE27 

DAVER27B27 – Difference between RAVE27 and BAVE27 

DAVEG27B27 – Difference between GAVE27 and BAVE27 
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