
www.manaraa.com

Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2007-07-02

Obstacle Avoidance and Path Traversal Using
Interactive Machine Learning
Jonathan M. Turner
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Turner, Jonathan M., "Obstacle Avoidance and Path Traversal Using Interactive Machine Learning" (2007). All Theses and
Dissertations. 1006.
https://scholarsarchive.byu.edu/etd/1006

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F1006&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F1006&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F1006&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1006&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1006&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F1006&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/1006?utm_source=scholarsarchive.byu.edu%2Fetd%2F1006&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

www.manaraa.com

TITLE PAGE

OBSTACLE AVOIDANCE AND PATH TRAVERSAL

USING INTERACTIVE MACHINE LEARNING

by

Jonathan Milton Turner

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science

Brigham Young University

August 2007

www.manaraa.com

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Jonathan Milton Turner

This thesis has been read by each member of the following graduate committee and by

majority vote has been found to be satisfactory.

___________________ ______________________

Date Dan R. Olsen, Jr., Chair

___________________ ______________________

Date Michael A. Goodrich

___________________ ______________________

Date Dennis Ng

www.manaraa.com

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate's graduate committee, I have read the thesis of Jonathan Milton

Turner in its final form and have found that (1) its format, citations, and bibliographical

style are consistent and acceptable and fulfill university and department style

requirements; (2) its illustrative materials including figures, tables, and charts are in

place; and (3) the final manuscript is satisfactory to the graduate committee and is ready

for submission to the university library.

___________________ ______________________

Date Dan R. Olsen, Jr.

Chair, Graduate Committee

Accepted for the Department

___________________ ______________________

Date Parris Egbert

 Graduate Coordinator

Accepted for the College

___________________ ______________________

Date Thomas W. Sederberg

Associate Dean,

College of Physical

and Mathematical Sciences

www.manaraa.com

ABSTRACT

OBSTACLE AVOIDANCE AND PATH TRAVERSAL

USING INTERACTIVE MACHINE LEARNING

Jonathan Milton Turner

Department of Computer Science

Master of Science

Recently there has been a growing interest in using robots in activities that are

dangerous or cost prohibitive for humans to do. Such activities include military uses and

space exploration. While robotic hardware is often capable of being used in these types

of situations, the ability of human operators to control robots in an effective manner is

often limited. This deficiency is often related to the control interface of the robot and the

level of autonomy that control system affords the human operator. This thesis describes a

robot control system, called the safe/unsafe system, which gives a human operator the

ability to quickly define how the system can cause the robot to automatically perform

obstacle avoidance. This definition system uses interactive machine learning to ensure

that the obstacle avoidance is both easy for a human operator to use and can perform well

in different environments. Initial, real world tests show that system is effective at

automatic obstacle avoidance.

www.manaraa.com

v

TABLE OF CONTENTS

TITLE PAGE ... i

ABSTRACT ... iv
TABLE OF CONTENTS .. v
Chapter 1 – Introduction ... 1

1.1 The Safe/Unsafe System ... 4
1.2 Approaches to Robot Control ... 5

1.2.1 Robot Perspective vs. User Perspective ... 10
1.2.2 Driving With Distractions .. 11

Chapter 2 – Related Work... 14

2.1 Shared Control .. 14
2.2 Sonar/Laser ... 15
2.3 Vision-Based ... 16

2.3.1 Fixed Vision-Based .. 17

2.3.2 Trainable Vision-Based ... 19
2.4 Interface Support ... 21

Chapter 3 – Overview ... 22
3.1 System Components.. 22
3.2 Navigation Interface.. 24

3.3 Safe/Unsafe Specification ... 27
3.4 Map Generation .. 31

3.5 Path Traversal ... 32

Chapter 4 – Classification ... 34

4.1 Decision Trees .. 34
4.2 Classifier Training .. 39

4.3 Classifying Images .. 43
Chapter 5 – Map Generation ... 45

5.1 Generating the Environment Map ... 45

5.2 Updating the Environment Map.. 50
Chapter 6 – Path Traversal .. 53

6.1 Path Generation ... 54

6.2 Path Following .. 57
Chapter 7 – Evaluation.. 62

7.1 Test Description .. 63
7.2 Results ... 69

Chapter 8 – Conclusion ... 71
Bibliography ... 75
Appendix – List of Features .. 81

Basic Features ... 81
Averaging Features ... 81
Differencing Features of Same Size ... 81
Differencing Features of Different Size .. 82
Gradient Features (Vertical and Horizontal)... 85
Differenced Averages ... 85

www.manaraa.com

www.manaraa.com

1

Chapter 1 – Introduction

 There has been significant focus in recent years on using robots for tasks typically

done by humans. There are advantages to using robots instead of humans in many

situations. One of the primary sources of difficulty in using robots is enabling them to

act in a manner that reduces and augments human effort rather than increasing it. This

thesis introduces a system designed to reduce human effort while navigating robots. Part

of this system in operation, shown in figure 1, demonstrates obstacle recognition.

Figure 1 – System has marked obstacles with red and safe areas with blue.

 There are various situations where using robots instead of humans is desirable

because of the level of risk involved. There are many things that humans have to do even

www.manaraa.com

2

though they involve a great deal of risk to the human doing them. One such example is

military reconnaissance. This activity is dangerous because usually the areas of most

strategic importance are the areas where it is most likely that hostile enemy forces will be

located. If humans perform this activity they run a serious risk of being wounded or

killed. If a robot goes into enemy territory the worst that will happen is that it will be

destroyed and have to be replaced. There are various other military applications for

robots that help reduce the risk to human life.

 Another example of a situation where having a robot perform a given task would

reduce the risk to human life is when the environment where the task is being performed

is itself dangerous. Such an environment might be inside a nuclear power plant.

Maintenance has to be performed regularly to ensure proper operation of the facility.

Exposure to radioactive environments is always risky to humans, so any potential

exposure that can be avoided by using robots would reduce the risk to humans.

 In addition to making tasks less dangerous for humans, there are also situations

where it is simply easier or more cost effective to use robots. An excellent example of

that is space exploration. Take for example the recent Mars rovers, one of which is

pictured in figure 2. Sending two robotic rovers to Mars cost approximately $800 million

[BRAI04], whereas sending a manned spacecraft to Mars is estimated to cost anywhere

from tens of billions to hundreds of billions of dollars (some estimates are even as high as

a trillion dollars) [OBER04]. This extra cost is directly attributable to the extra materials

and effort necessary to keep humans alive on such a journey. Robots are much easier and

less expensive to transport.

www.manaraa.com

3

Figure 2 – One of the Mars rovers [STEN02].

 Despite the many advantages of using robots there are disadvantages as well. One

of the main obstacles in using robots is getting them to do something useful. In the past,

operating a robot has been a very tedious and manual process. The majority of the

responsibility for operating the robot, navigating it through its environment, and

interpreting the situation around it has been placed primarily on a human who directly

controls the robot. This is not only difficult for humans to do, it is also imprecise and

time consuming. Fortunately, not all robot control systems are of this limited,

teleoperated type. Some control systems used information available to the system

(usually from sensors located on the robot) to make some simple, but useful decisions

that help a user more easily navigate an environment. The system described in this thesis

is one such system. Some others are discussed in chapter two.

www.manaraa.com

4

1.1 The Safe/Unsafe System

 This thesis details a system, referred to here as the safe/unsafe system, that

addresses some of the difficulties related to traditional robot navigation. The heart of this

system is a user-trainable, vision-based obstacle detection mechanism based on the

Crayons system [FAIL03]. With this Crayons-based system, a user may specify which

areas are safe for a robot to travel and which areas are unsafe. After the user has told the

system which areas are safe and which areas are unsafe, the user is then able to give

commands like “go over there” or “move to the other side of that obstacle” as opposed to

lower level commands that might include “drive forward thirty-two inches” or “turn

negative six degrees.” Instead, the robot is responsible for these low-level commands.

This is a type of system known as shared control. Shared control systems are discussed

in more detail in chapter two. The robot performs basic obstacle avoidance, driving

around the unsafe areas, to arrive at a location the user specifies. Real-time, interactive

trainability allows the system to be used in a wide variety of situations. The purpose of

the system is to make the robot responsible for many low level navigational commands

thus allowing a human user to focus on higher level, strategic tasks. The reason for doing

this is to make navigating a robot easier for the human user.

www.manaraa.com

5

Figure 3 – Obstacle blocking path between robot and desired goal location.

 A basic example can help demonstrate the difference between the safe/unsafe

system and a traditional robot control system. Suppose there is a robot with a single

obstacle directly in front of it, as shown in figure 3. Next assume that the human user

controlling the robot wants to move the robot to the goal location as marked in the figure.

The robot will obviously have to go around the obstacle in order to be able to get to the

desired goal. This maneuvering can either be performed by the user or by the system.

An explanation of the difference between these two options follows.

1.2 Approaches to Robot Control

In a traditional control system, the user would have to turn the robot so that

driving it forward will no longer cause it to collide with the obstacle, as shown in figure

www.manaraa.com

6

3. The user must then drive the robot forward far enough so that it can get past the

obstacle. Since the obstacle will likely no longer be visible to the user when the robot is

in the correct location, the user must guess at when the robot has gone far enough. An

example of a situation where an obstacle is no longer visible to the robot but is still in the

robot‟s path is shown in figure 4.

Figure 4 – Situation where an obstacle is not visible to robot, but potentially still in its path.

The user will have to perform additional movements, like turning the robot to face the

obstacle, to determine if the robot has traveled far enough or not. If the robot has not

traveled far enough or has traveled too far, even more movements might be necessary.

Once the robot has moved far enough, the user must tell it to move to the goal. The user

www.manaraa.com

7

must determine where the goal is in relation to the robot‟s new position, as opposed to

from where the robot originally was when the goal was identified, and how to get there.

Figure 5 – An obstacle is marked as unsafe (red).

 Next, take the same situation, but instead of a traditional robot control system the

user has available the safe/unsafe system. An obstacle is still directly in front of the robot

and is blocking a direct path to the desired goal position. At this point the user specifies

what things are unsafe (the obstacle) and what things are safe (the area around the

obstacle). The system now knows that the obstacle should be avoided. An example of

such a classification is shown in figure 5. The red indicates areas that are unsafe, while

the blue indicates areas that are safe. With this safe/unsafe classification, the user can

now simply tell the robot to go straight to the desired goal location. As the robot is

www.manaraa.com

8

driving forward, the system will determine that the obstacle (the unsafe area) is in the

robot‟s path. The system will turn the robot to avoid the obstacle, drive the robot around

the obstacle, and then correct the robot‟s path to take it to the originally specified goal

location. The user does not have to give any additional movement instructions beyond

the initial “go to the goal location” command. The classification that the user specified

will be remembered by the system.

As long as the robot is in an area that has obstacles that look similar to the

original obstacle and safe areas that look like the original safe areas the user need not add

any additional safe/unsafe information in order to get the robot to avoid the new

obstacles. If new types of obstacles or new types of safe areas are encountered, the user

need only specify the new items as such and the safe/unsafe system will be able to avoid

the new obstacles, as well as the old one, and know to travel in the new safe areas, as well

as the old one. Figure 6 shows the original example situation with the path the system

causes the robot to travel in order to avoid the obstacle.

www.manaraa.com

9

Figure 6 – Obstacle blocking path to desired goal and the path determined by safe/unsafe system

around obstacle.

With traditional robot control systems the control is typically very direct. A user

controls a single robot. The user has a joystick or similar control device. When the user

is manipulating the control device then the robot moves. For example, when the user

pushes forward on the joystick the robot moves forward. When the user pushes left on

the joystick, the robot turns left. If the user doesn‟t manipulate the control device the

robot doesn‟t move. The system takes no initiative. Also, with traditional robot control

systems the user is in charge of maintaining a complete mental model of the situation.

The system will report information back to the user about its environment, but will not try

to interpret that information. That is up to the user. All navigation tasks are the

responsibility of the user. The user must remember virtually everything about the

www.manaraa.com

10

environment, including the location and nature of obstacles and the desired destination.

The user must also navigate the environment using relatively low level, rather unnatural

commands, the above mentioned “move forward” or “turn left” type commands. These

factors combined make a traditional robot control experience difficult and inefficient for

the user.

 The safe/unsafe system addresses some of the drawbacks of traditional robot

control systems by increasing the level of autonomy the robot has. Care must be taken

when adding automation to a system, as it is possible to make a system less effective by

adding automation to it [BAIN83]. However, if proper automation is added in an

effective way then the system can be easier to operate and the user‟s efforts can be made

more efficient. Following are some ways in which automation can improve the

effectiveness of a system.

1.2.1 Robot Perspective vs. User Perspective

 One area in which increasing autonomy in a robotic system can improve the

effectiveness of the system is in regards to difference between user perspective and robot

perspective. An example of this is a problem often encountered when using the robots on

which the system in this thesis was implemented. This is the problem of corner clipping.

This problem was almost invariably encountered with inexperienced users, but not

infrequently encountered with even relatively experienced users. The difficulty stemmed

from the fact that from where the camera is situated on the robot, to the user it appears as

though the robot may have passed an obstacle when it fact it hadn‟t. The user, assuming

the robot was past the obstacle would turn and continue driving. Since the robot was not

www.manaraa.com

11

actually past the obstacle it would collide with the obstacle, causing the robot not to move

or to move in a manner unexpected by the user. This obviously caused great frustration

for users and increased the difficulty of navigating the robots. However, in the

safe/unsafe system, the automation can take into account the size of the robot when

determining when and how much it should turn and will consequently not make a turn

that is too close to an obstacle.

 A second area in which automation can take advantage of the difference between

robot perspective and user perspective is that it is possible for a robotic system to handle

more simultaneous inputs than a human user can. For example, a human user might have

a difficult time interpreting data from several cameras, several sonar sensors and

odometry sensors all at the same time. Depending on the hardware being used, a robotic

system could handle all the above sources of information without being confused by

trying to interpret all the data in unnecessary ways. The difference between robot and

user perspective can also be taken advantage of in the case of high latency control

situations. For example, with the Mars rovers it can take several minutes for a complete

feedback cycle to occur. The robot can travel a great distance and encounter a wide

variety of situations in that amount of time if it is traveling autonomously.

1.2.2 Driving With Distractions

 Another area in which increasing autonomy in a robotic system can improve the

effectiveness of the system is in situations where the user is attempting to control a robot

while being distracted. An example of such a situation might be a military environment

where a soldier is controlling a robot to gain reconnaissance information while trying to

www.manaraa.com

12

complete other, non-related orders. The soldier could focus on the non-related orders

while only occasionally focusing on controlling the robot. When the soldier is not

focusing on the robot it can continue to perform useful work autonomously.

 A related benefit of increased autonomy is the ability to control multiple robots.

This is similar to the example given above where a user performs non-related tasks while

a robot moves autonomously. However, in this case the “non-related tasks” involve

controlling one or more other robots. So a user gives a command or set of commands to

a robot. While the robot is performing those actions the user can give commands to

another robot. If the first robot is still performing the commands given when the user

finishes giving commands to the second robot then the user could start giving commands

to a third robot. The number of robots that can be controlled depends on how

autonomous the robots are and the limits of the user‟s ability to focus on multiple tasks

[OLSE04].

 One of the main reasons for controlling multiple robots with a single user is to

increase user efficiency. Since fully autonomous robots have not yet proven effective in

most situations, the most important part of a robotic control system is arguably the human

user. The robot can perform useful work, but only when so instructed by the user. Thus

it makes sense to utilize the most important part of the system, the user, in the most

efficient manner possible. When using multiple robots, the user‟s time and talents can be

more efficiently utilized by generating new commands for one robot while waiting for

another robot to finish commands already given. This allows the user to perform useful

work instead of simply watching idly while waiting for a single robot to perform a set of

commands the user has given it.

www.manaraa.com

13

 How a user‟s abilities can be more effectively used with multiple robots is

illustrated in a search example. Suppose that an area of fixed size must be searched. The

search could be for a person, such as in a search and rescue operation, or for land mines

in a military setting. Given one robot, a user could search the entire area in a certain

amount of time. However, if the user were given five robots, the area could be searched

in approximately one-fifth the time. This, of course, assumes that the robots are

sufficiently autonomous and the user sufficiently skilled so that all five robots may be

controlled at once.

www.manaraa.com

14

Chapter 2 – Related Work

 The safe/unsafe system has similarities to many previous works. This chapter

discusses some of these various works which include shared control systems, sonar and

laser-based navigations systems and vision-based systems.

2.1 Shared Control

The safe/unsafe system is similar to some shared control navigation approaches.

Shared control systems, also called collaborative control systems, have been a topic of

much research [FONG98] [BRUE03]. In general, shared control systems allow the

system to control some part of the robot navigation, thus allowing a user to control it

more easily and focus on higher-level goals [CRAN02]. Exactly what the robot does is

determined partly by commands given by the user and partly by commands generated by

the safe/unsafe system. Rosenblatt [ROSE95] describes a general shared control system.

Various components generate desired behavior (or commands). These desired commands

are then combined to determine the actual action that will be taken. The safe/unsafe

system essentially has only two such components, the obstacle avoidance module and

commands from the user. Röfer and Lankenau detail several different classes of shared

control systems [ROFE99], one of which is similar to how the safe/unsafe system

combines user commands and automated adjustments. Different types of shared control

systems can be more effective than others, depending on the situation [BRUE04]. Some

shared control systems allow for automatic preemption of user commands. In these

situations the system is able to modify or nullify a user command if it is deemed

www.manaraa.com

15

inappropriate. In the safe/unsafe system, user commands are modified so that the robot

avoids obstacles, but the system will respond immediately to any new user commands.

This is similar to the first shared control mode (the speed controller supervisory mode)

discussed by Röfer and Lankenau. However, these shared control systems are based on

sonar and only provide limited obstacle avoidance whereas the safe/unsafe system is

based on vision and provides path traversal capabilities in addition to obstacle avoidance.

2.2 Sonar/Laser

 Many systems have been implemented that use sonar for robot navigation

[BORE89], [BORE91], [JENS99], [LEVI99], [MING00], [OHYA98]. These systems

use sonar sensors to get the distance and heading to obstacles in the robot‟s environment.

This information is used to create a representation of the obstacles in the robot‟s

environment. The systems then use this obstacle information to modify or override user

commands that would cause the robot to collide with an obstacle according to the

information obtained from the sensors. Some systems [JENS99] use laser range finders

in place of sonar sensors. The primary differences between sonar and laser sensors are

that the laser sensors are more accurate, less susceptible to noise and generally more

expensive.

 Sonar and laser-based systems are effective at navigating many types of

environments. The computational requirements necessary for such a system are

relatively low. However, such systems have difficulty navigating environments that do

not consist of positive space obstacles (environments where the obstacles are holes or flat

delineators) or if the environment is such that the obstacles cannot easily be detected by

www.manaraa.com

16

the sensors. Some examples of environments where obstacles would be hard to detect

would be environments where the navigation surface is not level (if the robot is tipped

forward or backward the sensors might not detect an obstacle) or environments

containing obstacles too short to be detected by the sensors or not solid enough to reflect

the sonar or laser (an example of this might be a bush or small tree).

 Another potential disadvantage of sonar and laser-based systems is that there is a

significant amount of information in an environment that they are not able to collect or

use. Sonar and laser sensors are not able to detect or use any visual information (such as

color). In many navigational tasks this type of information is not critical to successful

navigation of the environment, but in some situations such information is critical.

2.3 Vision-Based

 Other systems use visual information for navigation instead of information from

sonar or laser sensors. For the purposes of this thesis these types of systems have been

divided into two general categories: fixed and trainable. Fixed vision-based systems

employ no learning aspect. The ways in which new images received are interpreted and

environmental information extracted from them is always the same. The algorithm used

is always the same regardless of past experience or use input. Trainable vision-based

systems involve some form of learning. The system can learn how to process new

images in different ways or how to interpret the information differently. In order for the

system to learn how to deal with the images it receives it must be trained. The training

process can greatly affect the performance of the system. The safe/unsafe system is a

type of trainable vision-based navigation system. The differences between the

www.manaraa.com

17

safe/unsafe system and other trainable vision-based systems are discussed below in the

trainable vision-based section.

2.3.1 Fixed Vision-Based

 Fixed vision-based systems have a set algorithm used to process new images and

extract information from them. A common element of fixed vision-based systems is the

use of feature areas. These are areas that have some visual characteristic that can be

fairly easily recognized and can be used to distinguish the area from other areas in the

image. These same characteristics can be checked for in other images. Such

characteristics can be determined for an image at a known location. If the characteristics

in a new image are the same as those computed for the area in the image whose location

is known then it is assumed that the new area is the same location in the environment as

specified in the original image. This way the same environmental location may be

identified in two different images, whether these images were seen consecutively or one a

great deal of time after the other. Since visual information is used, fixed vision-based

systems are able to draw from a much richer set of information than sonar or laser-based

systems, as discussed above. However, fixed vision-based systems suffer from two

major drawbacks.

The first drawback to fixed vision-based systems has to do with general

environment navigation. Systems such as those discussed by Davison [DAVI99] and

Ohya et al [OHYA98] use the above mentioned feature areas to determine where the

robot is in a previously created environment map. A map of the area in which the robot

is going to navigate is created. In this map, several points of interest are identified.

www.manaraa.com

18

Feature information about these points is generated and stored. As the robot is navigating

it looks for areas in the images it receives that match the features for these points. When

such a point is detected with a given degree of certainty the system uses that information

to determine where the robot is in the environment. The environment map can then be

used to generate a path to other areas in the environment.

The obvious disadvantage of such an approach is that a detailed map of the

environment must be generated before the robot can effectively navigate said

environment. In some situations, like an office space or warehouse, the robot will never

leave its environment or encounter significantly different environmental characteristics.

In such a situation relying on a detailed, previously generated map might be acceptable.

However, in many situations the environment that the robot is to navigate changes very

drastically during navigation. In other situations the robot‟s environment cannot be

mapped adequately a priori, meaning a detailed environment map cannot be generated

before navigation. Such examples might include space exploration (the purpose of

sending a robot being to investigate a previously unknown environment) or a war zone

(where buildings or geographic landmarks can be changed significantly or even destroyed

while a robot is navigating).

Other fixed vision-based systems do not require such a previously generated

environment map. These types of systems, such as those discussed by Davison et al

[DAVI95], Lang et al [LANG99], Murray et al [MURR96], and Zhang [ZHAN92] are

similar to the fixed vision-based systems discussed above. They find areas with features

that are identifiable and discernable from other areas in an image. Corresponding areas

are then found in subsequent images that the system receives. The location of

www.manaraa.com

19

corresponding areas in two or more images may be compared to determine information

about the robot‟s environment and how the robot is moving in that environment.

However, there is another drawback to vision-based systems, whether or not they

require a pre-generated environment map. This second drawback is the fixed nature of

such systems. If the algorithm for processing new images and extracting information

from them is always the same, then there is a very real possibility that such a system

would perform adequately in one environment and fail completely in another

environment. Take, for example, the system described by Lang et al [LANG99] that uses

information gleaned from the perpendicular lines in a suspension ceiling to aide the

system during navigation. Not even taking into consideration environments that do not

have a ceiling, it can be seen that such a system could perform very well in some

environments and fail in others. This is because the algorithm would be expecting to find

information about perpendicular lines on the ceiling regardless of what type of ceiling (or

lack thereof) exists in the environment. It will always generate the same kinds of

information, whether or not that type of information exists in or is relevant to the

environment the robot is in. The other fixed vision-based systems mentioned here suffer

from the same drawback.

2.3.2 Trainable Vision-Based

 Trainable vision-based systems are similar to fixed vision-based systems in that

they receive new images and extract information from these images about the

environment that the robot is in. The difference between trainable vision-based systems

and fixed vision-based systems is that the interpretation of a given set of input images

www.manaraa.com

20

when using a trainable system can be different depending on how the system was trained.

The interpretation of a given set of input images will always be the same for a fixed

vision-based system. Trainable vision-based systems can learn to recognize trees

[LECU05], soccer balls [MITR05], people and faces [PAPA00] or places the robot has

already been to [CHAN99] as well as other items in a given environment.

 A trainable vision-based system, as its name implies, requires some type of

training. The system does not do any useful interpretation of images until it has been

trained to some degree. Training consists of a human user giving some type of

interpretation of an image or a part of an image. This interpretation can range from

identifying an object in the image [MITR05], [PAPA00] to identifying which way a robot

should turn [CHAN99], [LECU05]. The sample images combined with the interpretation

of those images is often called training data.

 The safe/unsafe system is a trainable vision-based with some significant

differences from a normal trainable system. One of the greatest strengths of the

safe/unsafe system, when compared to other trainable systems, is in regards to how it is

trained. Most trainable systems require a distinct training phase that must happen

independent from and prior to any kind of navigation phase. Once the training phase is

complete and the navigation phase started no more training can occur unless the robot is

taken out of the field and additional training data created for it. This process could take

hours or days or weeks. It is something that most systems try very hard to avoid doing.

However, with the safe/unsafe system the user is able to add more training data as the

robot is navigating. The process only takes seconds. The way incoming images are

interpreted changes as soon as the new training data is added. This is one of the greatest

www.manaraa.com

21

advantages of the safe/unsafe system in general and is its single greatest advantage over

other trainable vision-based systems.

2.4 Interface Support

 Many robot control systems use the system‟s user interface in order to help the

operator more effectively navigate a robot. The control interface can make robot

operation more effective in the way it displays sensory information [MURP96]. Robots

are often equipped with sensors that are not directly analogous to a human sense (such as

sonar). The way in which the interface displays information from these types of sensors

can greatly aid or greatly confuse the user. The interface may also interpret this

information (to build a map for example) and combine it with other sensory information

such as video [NIEL06] to give the user the benefit of using multiple types of sensors.

Additionally, the interface may let the user change the level of autonomy the system

exhibits based on the situation [YANC05]. The system‟s current model of the world may

also be displayed by the interface in a way that is relatively easy for the user to

understand and interpret [DRUR03]. The safe/unsafe system uses several of these ideas

(displaying an interpretation of sensory input and the system‟s current model of the

world) or variations on them (displaying sensor data and interpreted sensor data as

though they were from two different types of sensors) to aid users in performing effective

robot navigation.

www.manaraa.com

22

Chapter 3 – Overview

 This chapter provides details about the robotic platform used to implement and

test the system. The overall interaction between different components of the system is

also detailed. The details of the individual components are provided in subsequent

chapters.

Figure 7 – Two views of robot, with different components marked.

3.1 System Components

 The robots used to implement and test this system consist of a transport platform,

a low-level control board, a laptop and a camera. The transport platform is custom made

for these robots and is shown in figure 7. It is capable of holding and transporting all of

the other robot‟s components. It includes two powered wheels plus two additional,

smaller wheels for stability. The low-level control board is called a Javelin board. It

contains a limited Java virtual machine. The Javelin board accepts commands over a

serial connection to the laptop. It can also send back status information to the laptop.

www.manaraa.com

23

The Javelin board has been programmed to accept commands of the type “drive forward

x inches” or “turn left y degrees”. These commands are then translated into actual wheel

movements by the Javelin board. The Javelin board keeps track of the command it is

currently executing, how much of the command has been executed and when the wheels

should stop moving because the command is complete. The Javelin board is paired with

an additional control board, which regulates the exact voltage applied to the wheel

motors. Two pairs of 7.2V rechargeable batteries power the Javelin board and motors.

 The laptop communicates with other computers. There is a controlling, desktop

computer that is connected to the laptop through a wireless network (802.11g). The user

can operate the robot with the desktop computer. All commands sent from the desktop to

the laptop are translated into simpler commands that can be given to the Javelin board.

Also all image processing and path generation functions (both of which will be described

in more detail shortly) occur on the laptop. The camera is attached to and operated by the

laptop. The basic robot control system is capable of using one or three cameras.

However, the obstacle avoidance system currently only uses one of the cameras.

www.manaraa.com

24

Figure 8 – Navigation interface with different areas labeled by functionality.

3.2 Navigation Interface

 The robot control interface is based on a “click where you want to go” mentality.

An image from the point of view of the robot is shown to the user. The location the user

clicks on the image determines the type of command that is issued. The interface is

shown in figure 8. If the user clicks on the lower half of the image, the robot will turn

until it is facing that point and then drive forward until it is on top of the point where the

user clicked. If the user wishes the robot to turn but not drive forward, the upper half of

the image can be clicked. The robot will turn to face the point the user clicked, but will

www.manaraa.com

25

not drive forward. Due to the limited field of view of the cameras being used, the user

sometimes desires to turn farther than is visible by the camera. For these situations the

user may click on the circle in the upper right-hand corner. One can imagine the robot

being at the center of the circle facing up. How far around the circle the user clicks

determines how far the robot will turn. For example, if the user were to click at three

o‟clock on the circle, the robot would turn ninety degrees to the right. If the user were to

click at six o‟clock the robot would turn one hundred eighty degrees. For situations

where the user wants to simply drive forward, there is a small section in the middle of the

view where the user can click to accomplish this. For safety and convenience purposes,

the user may click on the rectangle in the upper left-hand corner to stop the robot at any

time. When the user does this any movement commands the user has previously given or

that the robot is currently following are immediately terminated and the robot will take no

further action until more commands are given.

 The system is able to translate where a user clicks on the screen into movement

commands for the robot by translating pixels in camera space into an angle from the

robot‟s center of view and into a distance from the robot. This process is shown in

figures 9 and 10. The system must be calibrated to accurately map pixels in image space

to angles and distances. This is done by measuring angles and distances for a small

number of pixels. The angle from the center of the robot‟s view and the distance from

the robot for these few pixels are then known. However, it is impractical to take such

measurements for all the pixels in the image viewable from the robot‟s camera. For the

pixels that do not have explicit measurements linear interpolators are used, one for

distance and another for the angle. An interpolator interpolates, or estimates, an

www.manaraa.com

26

unknown value that is between two known values. For example, if a pixel at height 100

is manually mapped to 50 inches and a pixel at height 200 is manually mapped to 80

inches then the linear interpolator for distance might give a pixel at height 150 a distance

of 65 inches. This interpolation does not result in perfectly precise distances and angles,

but given a sufficient number of manually measured points it does give adequate and

effective results. This algorithm also assumes that the world in which the robot is

traveling is flat. The effects of this assumption and why it only has minimal impact on

the safe/unsafe system are discussed in chapter 5.

Figure 9 – Mapping a pixel seen to a distance from the robot (side view).

www.manaraa.com

27

Figure 10 – Mapping a pixel seen to a distance from the robot and an angle from the center of view

(top view).

3.3 Safe/Unsafe Specification

 The system described above was implemented previously to and is not the focus

of this thesis. Rather this thesis focuses on an addition to the above system whose

purpose is to increase the efficiency with which a user may control the robot. The basic

system combined with the addition is what is referred to here as the safe/unsafe system.

This section describes how the various parts of this system work and interact. Extensive

details about each part are covered in subsequent chapters.

www.manaraa.com

28

Figure 11 – Navigation and safe/unsafe specification components of user interface.

 On the user interface for controlling the robot, the user is shown two images from

the camera on the robot. An example of this interface is shown in figure 11. One of

these images is used for navigation, as described above. The other is used to specify

obstacle avoidance information. The user may draw on this second image with the

mouse. The left mouse button draws in one color while the right mouse button draws in

another color. The colors that were chosen were blue for the left button and red for the

right button. The purpose of this is to specify areas that are safe for the robot and areas

that are unsafe for the robot. The blue areas represent areas that are safe, while the red

areas represent areas that are unsafe. Using the left mouse button will denote safe areas

(blue) and using the right mouse button denotes unsafe areas (red). After the user

finishes drawing on the image, that information is sent to the robot. The systems on the

robot use that information (combined with any such previously received information) to

train a classifier. The classifier is trained to classify images in terms of what areas in the

image are safe and what areas are unsafe. When new images are received from the

camera on the robot they are classified by the safe/unsafe classifier. This classification is

sent back to the user interface and displayed over the image that the user draws on. The

www.manaraa.com

29

transparency of the layer may be modified by the user. This allows the user to see what

is currently being classified as safe and unsafe. The user will be able to immediately find

areas that are misclassified and supply more training data to correct the classification.

 Figures 12 through 15 show these classifier training principles. In figure 12, no

training data has yet been provided (no classification overlay on the left-hand image).

The user is drawing in red, specifying that the orange area on the floor is unsafe. Figure

13 shows the resulting classification. Everything is classified as unsafe. This is because

the system does not yet have any counter examples. The user draws on an area of floor in

blue to specify that the floor is safe. The classification after adding these two pieces of

training data is shown in figure 14. With only minimal training data the system is already

classifying the orange areas correctly as unsafe and the floor correctly as safe. The

orange area on the right is correctly classified as unsafe, even though it was not

specifically marked as unsafe. Figure 15 shows an incorrect classification. Part of the

floor is being classified as unsafe. The user is drawing in blue on the incorrectly

classified part of the floor to specify that is it safe. A new classifier will be created that

will correctly classify the floor as safe. These principles are discussed in more detail in

the next chapter.

www.manaraa.com

30

Figure 12 – User specifying that the orange area is unsafe by marking on it with red.

Figure 13 – Everything is now classifying as unsafe (red). User specifies that floor is safe by marking

on it with blue.

www.manaraa.com

31

Figure 14 – Orange areas are now properly classified as unsafe (red), and floor is properly classified

as safe (blue).

Figure 15 – Use correcting a misclassification of the floor by marking on it with blue.

3.4 Map Generation

 In addition to sending the classification to the user interface, the robot uses the

classification to build a map of its environment. By using the same mechanism employed

in the navigation component, a point on an image from the camera (camera space) may

be translated into point in the robot‟s environment (environment or map space), by

www.manaraa.com

32

getting the angle from the center of view and distance to the robot. Since each pixel in

the camera image is classified as safe or unsafe and each pixel in the camera image can

be mapped to a point in the robot‟s environment, a map of the obstacles in the robot‟s

environment can be built. An example of such a map is shown in the left-most pane of

figure 16. The process will be discussed in more detail in chapter 5.

Figure 16 – The navigation, safe/unsafe and path traversal components of the user interface.

3.5 Path Traversal

 This environment map is sent back to the user interface for display to the user.

The environment map is also used to help the robot avoid obstacles while navigating.

Suppose that the user tells the robot to drive forward, but that there is an area between the

robot and the user-specified destination that is being classified as unsafe. The robot can

use the environment map to first detect that such an obstacle exists and not run into it and

second to plot a safe path around the obstacle to end up where the user originally told it to

go. When the robot is given a movement command it generates a safe path to the

specified location using the environment map. It then starts moving, making sure to

follow the path it has generated. As the robot moves, the environment map is translated

and rotated based on the forward movement and turning of the robot. Also as the robot

www.manaraa.com

33

moves and its camera receives new images and they are classified, the environment map

is updated with the new classification information. Thus the robot will always have

current information about the safeness and unsafeness of what is directly in front of it but

will also be able to “remember” how safe and unsafe the areas are that are no longer

directly visible. This process will be discussed in more detail in chapter 6.

www.manaraa.com

34

Chapter 4 – Classification

 The classification portion of the safe/unsafe system is the first step in allowing the

system to perform obstacle avoidance. Without classification, the system would not be

able to interpret the images the robot receives from its camera. Once what the robot is

seeing is interpreted, or classified, information can start being gathered about the robot‟s

environment. In the case of the safe/unsafe system it is the map generation module

(described in the next chapter) that takes the interpretation of what the robot sees and

extracts information from it about the environment the robot is in.

The classification employed in the safe/unsafe system uses machine learning to

create a classifier which interprets new incoming images. This classifier must be trained.

Training a classifier requires adequately labeled training data. The training data is

obtained by having the user “draw” what areas are safe and what areas are unsafe. The

image the user has drawn on is considered the data, while the “ink” the user has drawn on

the image is considered the classification of that data.

4.1 Decision Trees

 While various types of machine learning could be used to create the safe/unsafe

classifier, for this system decision trees [MITC97] were chosen for several reasons. The

basic idea of a decision tree is to build a tree where each node in the tree asks a question

about the data being classified. The answer to that question determines how the tree is

traversed and eventually what classification the incoming data will receive. A simple

example of a decision tree would be one with a single node. The question at the node

www.manaraa.com

35

would be, “Is the pixel being classified completely black?” If the answer is yes then the

pixel is classified as unsafe. Otherwise the pixel is classified as safe. In more complex

decision trees, instead of a node having classifications for its children it has other nodes.

All the leaves in the tree, of course, have to be classifications. Decision trees do not have

to be binary, but the ones implemented for this system are.

In order to be able to have more useful “questions” at each node, features are

generated for each pixel. These features are used to determine qualities of a given pixel

and how it relates to the pixels around it. This allows information beyond the simple

RGB values of a given pixel to be used in determining its classification. In the system as

it is currently implemented, there are over 200 features generated for each pixel. Some of

these features are as simple as the RGB values for the pixel being classified, while others

take into account many of the pixels around the pixel in question. Some of these more

complex features include the sum of the red component of all the pixels in a 3x3 square

around the pixel in question, the sum of the blue component of all the pixels in a 9x9

square around the pixel in question and the difference between the sum of the red

component of all the pixels in a 9x9 square and sum of the green component of all the

pixels in a 3x3 square. The areas dealt with range in size from 1x1 to 225x225. There

are also features that deal with the minimum or maximum red, green, or blue value over

an area, the average red, green or blue value over an area, the difference between

averages, and the difference between an average over an area and a sum over an area.

Most differencing features have both areas centered around the pixel in question. Other

features calculate the difference between two areas to either side of the pixel in question,

www.manaraa.com

36

both horizontally and vertically in order to detect edges. All features are listed in the

appendix.

All 200 features must be generated for each pixel when the classifier is being

trained and at least some of the features must be generated when a pixel is classified.

Since most of the features have to do with color values over an area, a technique known

as integral images [VIOL01] is used to calculate these values quickly. An integral image

is created for each color plane (red, green and blue) on each image. Each pixel in an

integral image is the sum of the pixels above and to the left of it. Once the integral image

has been created, the sum of the values over any arbitrary rectangle in the original image

can be calculated in constant time by using the values in the integral image at the corners

of the rectangle. This allows sums of areas to be calculated and compared quickly and in

constant time. Thus the system can use the information about a large area around a given

pixel without incurring a high calculation time.

 Decision trees offer several benefits as they are used in the system. For the

safe/unsafe system, the training process must be able to happen in real time. Decision

trees have very fast classification times compared to most machine learning algorithms.

Decision tree also have a fast training time compared to most machine learning

algorithms. For the safe/unsafe system the classification must be fast, both in order to

allow the robot to navigate effectively while traveling at a reasonable speed and to give

the user fast feedback about the quality of the classifier currently being used. The

training times must be fast so that the user can quickly add new data and correct

misclassifications. If the system took hours or even minutes to create a new classifier

every time the user added more data, the system would be considerably less useful. The

www.manaraa.com

37

classification times of the system must be fast because each image that is received must

be classified. To do this most of the pixels on the image must be classified. A separate

classification is generated for each pixel. If the system takes too long classifying pixels it

may not be able to recognize obstacles in its environment quickly enough, and run the

risk of colliding with them. For the purposes of this system, decision trees offer a good

balance between training times and classification times.

 Another benefit of decision trees is that they can typically use a small working set

of the total available features for classification. For example, in the system implemented

there are over 200 features. When the classifier is being trained, the features that best

classify the training data are used to create the decision tree. It is not uncommon for a

good classifier to only use ten of the available 200 features to build a decision tree, but

depending on the environment a different set of ten features will be used. This allows for

smaller decision trees, since each node of the tree can be more “descriptive” in how it

classifies or categorizes the data. A smaller tree in turn leads to faster classification times

since fewer nodes have to be traversed in order to classify a given pixel.

 There are many variations on the basic decision tree algorithm. The safe/unsafe

system was implemented in such a way that different variations can be used relatively

easily. However, one particular implementation was used the most often as it provided

the best overall classification quality and execution time in the situations in which the

system was used. The quality and execution time of the implementation were compared

empirically to other implementations. This implementation is a binary decision tree that

uses subsampling and standard deviation split points.

www.manaraa.com

38

In a decision tree, a choice must be made at each node as to which feature should

be used at that node. The training examples whose classification would use a particular

node in the tree are used to determine which feature should be used at that node. A

standard decision tree used all the training examples available to it to determine which

feature to use at any given node. In the safe/unsafe system the number of training

examples can quickly grow into the thousands or even millions. In order to reduce the

impact on training time that all these examples have, a subsample of the examples at each

node is used. This can greatly reduce the training time while only slightly impacting the

classification time (since each node is only looking at a subset it is not as effective at

dividing the remaining data as it could be, thus resulting in a slightly increased tree

depth).

A second optimization to the standard decision tree algorithm that is used in the

decision tree algorithm employed in the safe/unsafe system is the use of standard

deviation split points. At each node of the tree a feature of the data being classified must

be inspected. The node splits the tree depending on the value of that feature. This value

is called a split point. In the standard decision tree algorithm, the value of each training

example is used as a potential split point. The algorithm finds the best of all possible

split points. There are different metrics for determining which split point is best, but they

all deal with how that split point would divide up the training examples. With the

standard deviation optimization, instead of checking the value of each training example

for a potential split point, the mean and standard deviation are used to find “clusters” of

training examples. The values of these “clusters” are used instead of the values of the

individual examples. This allows for potentially superior split points. This results in a

www.manaraa.com

39

smaller tree which translates into decreased classification times. Again, the size of the

tree was compared empirically with other implementations.

4.2 Classifier Training

 The safe/unsafe system uses a decision tree as the basis for its classification

process. But this decision tree must be built using data that has been labeled as safe and

unsafe by the user. This labeled data is called training data. Each time the user supplies

new training data the previously constructed decision tree is discarded and a new one is

built using both the new training data and any previously received training data. The

classification portion of the safe/unsafe system uses a decision tree to classify each pixel

in an image received from the robot‟s camera, marking each as safe or unsafe. The

following images show an example of how a safe/unsafe classifier might be trained. The

images are discussed below.

Figure 17 – User specifying that the orange area is unsafe by marking on it with red.

www.manaraa.com

40

Figure 18 – Everything is now classifying as unsafe (red). User specifies that floor is safe by marking

on it with blue.

Figure 19 – Orange areas are now properly classified as unsafe (red), and floor is properly classified

as safe (blue).

Figure 17 shows a view from the robot‟s camera before the user specifies any

training data. In the view on the left the user is adding an unsafe (red) specification to the

orange area on the floor. This is to specify that the orange area is an unsafe area and that

the robot should not drive on it. When the user presses the right mouse button down, red

ink (specifying unsafe) begins to be drawn. Anywhere the user moves the cursor on the

image is marked as unsafe. When the user releases the right mouse button the current

www.manaraa.com

41

image from the camera is saved with the ink the user has drawn on it. This information is

passed to the classifier. The classifier uses each pixel from the camera image that has ink

associated with it. Camera image pixels that the user did not mark as safe or unsafe are

ignored since it is not known whether they should be safe or unsafe. Features are

generated for each pixel with a classification. Since no previous training data exists, a

decision tree is built using the pixels and classification the user just specified.

The resulting classification of this decision tree is shown in figure 18. In the left

view in figure 18 everything is overlaid with red, indicating it was classified as unsafe.

This is incorrect, but is as correct a classification as the machine learning can produce.

At this point in the process the training data consists of examples of only one

classification (unsafe). There are no examples of any other classification. In a sense, the

classifier doesn‟t yet know that anything can be classified as safe, only unsafe, so

everything is classified as the only classification known to exist. In order for the

classifier to be able to classify pixels as safe, it must have some examples of what safe

pixels look like. This is what the user is specifying by drawing blue ink in the middle of

the left view in figure 18. The user is specifying that the area of floor in the image is safe

and that the robot should be allowed to travel there.

The specification of a safe area works much the same as the specification of an

unsafe area. To specify a safe area the user presses the left mouse button down. While

the button is pressed, anywhere on the camera image that the user moves the cursor is

marked as safe (indicated by blue). When the user releases the left mouse button the

current camera image and the user-specified classification are sent to the classifier as new

training data, just like when an unsafe area was specified. In the situation shown in the

www.manaraa.com

42

figures above some training data already existed (when the user indicated that the orange

area on the floor was unsafe), so the current training data is added to the existing training

data. A new decision tree is created that correctly classifies both the original training

data and the new training data.

The classification results of this new decision tree can be seen in figure 19. It can

be seen that the orange areas on the floor are correctly classified as unsafe while the floor

itself is correctly classified as safe. Even the orange area farther away is correctly

classified as unsafe, even though it was never explicitly marked as unsafe by the user.

This is one of the great strengths of the classification mechanism used in the safe/unsafe

system – generalization. Since one orange area was specified as unsafe, all orange areas

will be classified as unsafe, assuming that the features for the pixels are similar enough to

those of the pixels that were originally marked as unsafe.

If a situation is ever encountered where an area is classified incorrectly, the user

simply has to add more training data and a new classifier will be created that will

correctly classify the area. Adding the new training data and creating a new decision tree

can be done in a matter of seconds (or less depending on how much area is specified by

the user and how much previous training data there is). The user gets feedback about

how the classifier is working almost immediately and can correct errors almost as

quickly. This is one of the greatest advantages of the safe/unsafe system.

www.manaraa.com

43

Figure 20 – Basic classification process.

4.3 Classifying Images

This section describes how the classification process works in the safe/unsafe

system. The process is summarized in figure 20. First, an image is obtained from the

camera. This image is passed to the classifier. The classifier sends each pixel of the

image that is to be classified to the decision tree. The decision tree returns a class (safe

or unsafe) for that pixel, depending on the past training data it was created with. Once all

the pixels have been classified, the resulting classified image can be sent to other parts of

the system to determine what should be done based on which areas in the image are safe

and which are unsafe.

The safe/unsafe system as currently implemented does not classify every pixel of

every image. This is primarily for speed reasons. The system can classify every pixel of

every image, but then most of the computational resources of the system are spent on

classification. This leaves few resources available to actually react to those

classifications. A balance was found between the amount of information being classified

and the system‟s ability to react. As more computational resources become available in

www.manaraa.com

44

the same form factor and as additional optimizations are made to the system, this will be

less of an issue.

The first optimization taken is that only the bottom two thirds of the image is

classified. The top third is always above the horizon. Since the robot is unlikely to

encounter many obstacles in the sky, this seems like a valid course to take. The second

optimization is that only every other pixel is classified. There are virtually no obstacles

that could impede the robot that would show up as only a single pixel in an image

received from a camera mounted on the robot. All obstacles are at least several pixels

wide. So no information about the general location of obstacles is lost. In fact this can

actually improve the accuracy of obstacle detection if there is significant noise in the

classified image. The third optimization is that only every other image received from the

camera is classified. The camera receives images fast enough when compared to the

speed the robot travel at so that this optimization does not hinder the system‟s ability to

avoid obstacles. Enough information is classified far enough in advance that the system

is able to make the necessary adjustments in order to avoid obstacles.

www.manaraa.com

45

Chapter 5 – Map Generation

 The map generation module of the safe/unsafe system receives a classified image

that has been created by the safe/unsafe classifier. This image indicates what parts of the

robot‟s view are safe and which are unsafe. The map generation module uses this

information to create a map of the area around the robot. This environment map shows

unsafe areas (potential obstacles) in relation to the robot‟s position. The map can be used

to find a safe path from where the robot is to where the user wants it to go. The path

generation module is explained in the next chapter.

 The main purpose of the environment map is to give the robot a memory about

where it has been and what it has seen. This is important for the following type of

situation: the robot is traveling in an area with two obstacles. The robot must turn to

avoid the first obstacle. This puts the second obstacle in the robot‟s path. The robot

might turn to avoid the second obstacle and put the first obstacle back in its path. If the

obstacles are too close the robot might not be able to see the first obstacle when it makes

its second correction. In this type of situation the robot would collide with the first

obstacle and never know it. The environment map allows the system to “remember” the

location of the first obstacle so as not to collide with it while avoiding the second

obstacle.

5.1 Generating the Environment Map

In order to perform the mapping from a classified image to an environment map,

the system uses the same algorithms that are employed in the click-and-drive driving

www.manaraa.com

46

interface explained earlier. The driving interface works by translating a point in camera

space (the point where the user clicks) into a distance from the robot and a number of

degrees away from where the robot is currently facing. This effectively maps a point in

camera space to a point on the floor in the robot‟s environment, which is what is required

for the environment mapping algorithm.

In order for the click-and-drive interface to function correctly, it must be properly

calibrated. This calibration also affects how accurately classified images are translated

into an environment map. The method of how this is accomplished by using several

measured points and then linear interpolators for those points that aren‟t explicitly

measured is detailed in the section on navigation interface in chapter three. One of the

figures from chapter three that describes this process is repeated in figure 21. This same

method of mapping pixels in the camera space to distances and angles that are used to

drive the robot is also used in creating an environment map. This method is not

completely accurate but is sufficiently accurate to be not only functional but effective as

well.

www.manaraa.com

47

Figure 21 – Mapping a pixel seen to a distance from the robot and an angle from the center of view

(top view).

The algorithm for mapping points from a classified image to the environment map

is shown below.

 Get x and y coordinates of classified pixel. These coordinates are in camera

space

 Use the horizontal linear interpolator to find angle from robot‟s center of

view. This angle is in environment space

 Use the vertical linear interpolator to find distance from robot‟s current

location. This distance is in environment space

 Use trigonometric functions to convert the distance from the robot and the

angle from its center of view to forward and horizontal components

 Add these components to the robot‟s current position to get absolute

coordinates on the environment map

www.manaraa.com

48

One of the benefits of obtaining a safe/unsafe mapping of the robot‟s

environment, other than getting useful obstacle avoidance information, is the ability to

give new types of commands. The system allows the user to click on a point on the map

to specify a goal location for the robot. First, this allows goal locations to be given that

are not currently viewable by the robot‟s camera. Second, and more importantly, this

allows commands of the type “Go to the other side of that obstacle” to be given. The

user can give commands with the normal interface that will result in similar behavior of

the robot, but this new method results in a more intuitive way to give this type of

command. For example, in figure 22 the yellow area on the floor is being classified as

unsafe. The environment map is shown in the left-most pane of the figure. The red area

in the environment map represents the yellow area on the floor, but in environment space

instead of in camera space. The white circle on the environment map represents the

robot. The area inside the two gray lines represents the area that is currently viewable by

the robot‟s camera. With the environment map the user is now able to see the entire area

around the robot. The user can now click above the red area on the environment map to

tell the robot to go to that location. The meaning of this command is “go to the other side

of the obstacle”. A command that would result in the same behavior could be given in

the normal navigation interface, but it would have a different meaning. It would mean

“drive forward x inches”. Driving that distance just happens to be on the other side of the

obstacle.

www.manaraa.com

49

Figure 22 – Simple obstacle classification and accompanying environment map.

It should be noted that the classified image to environment map mapping

algorithm cannot distinguish between long, flat objects and tall objects (using a single

image). A tall unsafe object will be treated as though it were a long, flat unsafe object

thus covering more area in the environment map than it the object does in real life. This

is acceptable for two reasons. First, it is a false positive in regards to unsafeness. This

may cause the system to avoid an area that in reality doesn‟t need to be avoided, but it

does not cause the system to enter an area that is unsafe. The system errs on the side of

caution. Second, when the robot moves past the tall, unsafe object it will be able to see

that the area originally classified as unsafe is actually safe and the environment map can

be updated with the new information. So typically the false positive is only temporary

anyway. An example of such a situation is shown in figure 23. The box is being

classified as unsafe. In the environment map this is being translated into a very large

unsafe area. However, as the robot moves around the box the area that is being

incorrectly classified as unsafe will get correctly classified as safe, and the robot will be

able to travel behind the box if the user directs it to.

www.manaraa.com

50

Figure 23 - Classification of tall obstacle.

5.2 Updating the Environment Map

In order for the map to be meaningful it must constantly be updated as the robot

gains new information. It must also remember what the robot has already seen but can no

longer directly observe. The map is stored as an array of “safeness” values. The value

stored at each position on the map can range between 0 and 255. The safer a point is, the

lower the number being stored, and thus the higher its “safeness” value. Each time a

point on the map is identified as safe the value in the map reduced by 5. To help reduce

the effects of noise, the points around the point classified are also reduced (though only

by 2 in this case). The same process is followed when a point is identified as unsafe,

except the values are increased at the primary point by 10 and at the surrounding points

by 5. This essentially gives more weight to unsafe classifications than it does to safe

classifications. This was done so that the system can react more quickly to new unsafe

areas that are discovered. The map is continually updated as new images are received

from the camera and classified.

The algorithm for updating the environment map with data from a new classified

image is below.

 For each pixel in the classified image

www.manaraa.com

51

o Map the pixel to environment space

o If the pixel is safe

 Decrease the value at the point on the environment map by

5

 Decrease the values at the four neighbors of the point by 2

o If the pixel is unsafe

 Increase the value at the point on the environment map by

10

 Increase the values at the four neighbors of the point by 5

The map must not only be updated as new images are received, but also as the

robot moves. The paradigm chosen for this was to have the robot‟s position on the map

remained fixed while the map translates and rotates around the robot as the robot drives

and turns. Since with the current control model the robot can only move forwards and

since on the map the robot is always facing upwards only down translations of the map

must be accounted for. This simply moves values on the map to points lower (higher Y

values, since the origin is in the upper left-hand corner) on the map. The system knows

when to translate the map and how far to translate it based on feedback it receives from

the Javelin board. The Javelin board tells the system how far forward the robot has

moved. To rotate the map, a simple backmapping algorithm is used with the robot as the

point of rotation. Again, when to rotate and by how much is determined by feedback

from the Javelin board. This dead reckoning approach can lead to inaccuracy in terms of

reaching the goal position (this is discussed in more detail in chapter 7). However, the

www.manaraa.com

52

obstacle avoidance parts of the system are affected very little by the inaccuracies of dead

reckoning. This is because the environment map is update so frequently with new data

about the environment and the obstacles in it.

www.manaraa.com

53

Chapter 6 – Path Traversal

Figure 24 – User interface with path displayed (left-most pane).

The purpose of creating an environment map is so that the location of obstacles

relative to the position of the robot may be determined. When the locations of obstacles

have been determined then the obstacles may be avoided. Avoiding obstacles is the main

goal of the safe/unsafe system. The system uses the environment map to find a path, such

as the one shown in figure 19, from where the robot currently is to where the user told it

to go, that goes around obstacles rather than through them.

The first step in using the environment map for navigation is to generate a path

from the robot‟s current position to the place it is trying to go. When the user gives the

robot a command, the location the user specified is determined in the environment map

using the same mapping that is used to map a classified image to the environment map.

After finding the goal location, a path between the robot‟s location on the environment

map and the goal location on the environment map can be found. The second step is

generating the commands necessary to cause the robot to follow the path that has been

generated. If the direction the robot is currently traveling will take it too far off the path

the appropriate turn commands must be given to ensure that it stays on the path. If the

www.manaraa.com

54

robot reaches the goal then the goal is removed. When the user gives the robot a new

command, the goal location is recomputed, and the old goal location is discarded. The

main components of this process are shown in figure 25.

Figure 25 – Basic path traversal algorithm.

6.1 Path Generation

The path from the robot‟s location to the goal location is computed using a best-

first search [PEAR84]. Many search and path planning algorithms exist [RUSS03], but a

best-first search was chosen because the information available to the system lends itself

well to such a search (the robot and goal locations are known as well as safeness

information about all locations between the robot and the goal). Each node in the search

represents a position on the environment map. A list of all the nodes on the current

www.manaraa.com

55

search frontier is kept, sorted according to a heuristic value at each node. The heuristic

value is computed from the distance of the node to the goal location combined with the

“unsafeness” of that node. The unsafeness of a node is determined by finding the average

unsafe value in an area around the node in the environment map. To make computation

faster, an integral image of the environment map is generated before finding a path

through it. This allows the algorithm to compute an arbitrarily sized unsafeness value at

any node in constant time. The unsafeness value over an area is used, as opposed to the

value just at the node in question, to take into account the fact that the physical size of the

robot takes up an area on the environment map, as opposed to a single location.

When the unsafeness value is found, it is multiplied by a weighting factor and

then added to the distance of the node to the goal location. This combined value, distance

and unsafeness value, is the heuristic value for the node. The actual equation is abs(xrobot

– xgoal) + abs(yrobot – ygoal) + unsafeness value * weight factor. This weight factor was

used to increase importance of the unsafeness of a node when determining whether it

should be used as part of the path to the goal or not. Prior to adding a weighting factor

the system would sometimes generate a path that led the robot through a very unsafe area

because that was the path with the lowest heuristic. Different weight values were not

tested extensively, but it was found empirically that a value of 2.0 worked well. A value

of 1.0 to 2.0 resulted in the system sometimes still generating a path that led through an

unsafe area. A value of 2.0 or greater resulted in the system generating a path that

avoided unsafe areas, but often took the robot much farther away from obstacles that it

needed to go. One situation where this became especially important was when there were

two obstacles fairly close together but with enough room for the robot to travel between

www.manaraa.com

56

them. In type of situation if the weight factor was set too high then the system would not

generate a path that led between the two obstacles, even if there was enough room for the

robot to safely pass between them.

Once the heuristic value has been computed for the node, the node is put into the

list of frontier nodes, and the list is sorted so that nodes with lower heuristics come first

in the list. When a new node is taken from the list to be processed, it is taken from the

front of the list (so it has the lowest heuristic). The heuristics for that node‟s neighbors

are computed and the neighbor nodes are added to the list (if the nodes haven‟t already

been visited). The top five neighbors are added to the list (as opposed to all surrounding

eight) both to reduce the number of nodes being searched and to keep the algorithm from

generating paths that would force the robot to have to backtrack. The search ends when

the node containing the goal location is found. To help keep the system responsive, a

timeout is also used. If finding the path takes over a certain amount of time, then instead

of returning a complete path to the goal, the algorithm returns a path from the robot‟s

location to the node that the algorithm has processed that is closest to the goal. The

timeout is not normally used, but can be helpful in keeping the robot moving towards the

goal in situations where the environment map is particularly difficult to traverse.

Sometimes the path needs to be regenerated. This is done under several different

circumstances. First, if while following a certain path the robot receives a new command

from the user, the path is regenerated since the goal location has changed. Second, if the

area around the robot has changed significantly in safeness the path is recomputed.

Whether or not a significant change has occurred is determined by computing the

difference in the sum of the safeness values around the robot when the robot‟s current

www.manaraa.com

57

path was initially computed and the current sum of the safeness values around the robot.

If the difference between these two sums is great enough (a difference of 8500 was

determined empirically for the safe/unsafe system) then the path is recomputed. It could

be that when the path was originally computed then an area appeared safe, but as the

robot got closer more information was gathered, and it was determined that an area was

actually unsafe. If this is the case then the path should be recomputed so the new

information can be taken into account. Third, since the map rotation algorithm is

imperfect multiple rotation operations can cause the path to slowly degrade. If the path

has degraded sufficiently it is regenerated. This is done by determining how many points

in the environment map around the robot are marked as part of the path. If the number is

too small then the path is regenerated. A special case of this is if there are no path points

found around the robot. This can happen if the path has degraded or if the robot has

somehow gotten off the path. The path is regenerated in this case also. This will result in

a new path from the robot‟s current location to the goal, using the most up to date

information available from the environment map.

6.2 Path Following

After generating a safe path based on the environment map, the robot may use

that path to help it navigate. In order to do this the robot must be able to follow the path

that has been generated. The part of the safe/unsafe system that is responsible for

following the path uses a two window approach. These two windows are fixed areas on

the environment map directly in front of the robot‟s position on the map. If the path is

not found in either of these areas then it is regenerated (as discussed above). Since the

www.manaraa.com

58

start point of path generation is inside the first window this won‟t result in infinite path

regeneration.

The algorithm employed for both windows is the same. The point in the window

that is farthest away from the robot and contains part of the path is found. The angle

from the robot‟s current heading to this point is computed. This angle may be used to

generate a turn command to ensure the robot stays on the path. The angle from the

closest window is always computed first. If the angle for the first window is too large or

too small, the angle from the second window will be computed and used. This is to help

ensure that the path the robot ultimately takes is relatively smooth. The path generated

can contain a lot of small direction changes. Typically all of these small turns do not

need to be turned into commands, but rather the overall course of the path must be

followed instead. Finding the farthest path point and using the two-windowed approach

help the robot to follow the overall course and ignore all the minor variations in the path.

An example of a path that would require many small turn commands to follow exactly is

shown in figure 26. The jagged part of the path directly in front of the robot changes

directions many times in a short distance. The purpose of using a windowed approach is

to avoid performing many small turns and instead follow the general direction of the

path.

www.manaraa.com

59

Figure 26 – Path requiring many small turns to follow exactly.

Figures 27 through 29 show examples where the two different windows are used.

The windows are shown as green rectangles (they are not part of the normal interface).

Figure 20 shows an example of when the angle from the first window will be used. In

figure 21 the angle from the second window will be used. This is because the angle from

the first window is too small (zero in this case). In this case having the robot turn now

instead of waiting until it is further along the path will help it to avoid colliding with the

obstacle. Figure 22 shows an example where the angle from the first window is too large.

According to the path, the robot should make almost a 90-degree turn to the right in order

to stay on the path. However, a smaller angle will result in a more fluid movement

around the obstacle. Therefore the angle from the second window will be used.

www.manaraa.com

60

Figure 27 – Situation where first window will be used to determine angle adjustment.

Figure 28 – Situation where second window will be used to determine angle adjustment.

www.manaraa.com

61

Figure 29 – Situation where second window will be used to determine angle adjustment.

When it has been determined that a turn must be made in order for the robot to

stay on the path, a turn command is generated and sent to the Javelin board. After the

robot finishes turning a second command (a drive command) is given. This is to make

the robot start advancing towards the goal again. If the robot is ever at the goal (a small

margin of error (5 inches) is used in determining whether or not the robot is actually at

the goal) then a stop command is generated, and no further path generation or move

commands take place until the user gives a new command.

www.manaraa.com

62

Chapter 7 – Evaluation

 In evaluating the safe/unsafe system, there are many possible metrics that could

be used. For the purposes of this thesis two main areas of evaluation are taken into

consideration. The first evaluation metric is whether or not the system can avoid

obstacles. The whole purpose of the system is to automatically avoid obstacles, thus

allowing the user to concentration on other tasks. If the system cannot avoid obstacles

then it is not effective.

 The second evaluation metric is how close the robot gets to where the user told it

to go. If the user tells the robot to go to a particular point and the robot does not go to

that point, but does not run into any obstacles, then the system is still mildly useful, but

not nearly as useful as it could be. It is impossible for the robot to go to the exact

location the user specified (due to inaccuracies in the goal location specification interface

and the inaccuracies of the robot‟s physical components), but it should get close. Exactly

what “close” means can depend on what the robot is to be used for. Traversing a

minefield without driving over any of the mines might require a much more restrictive

definition of “close” than might a wilderness reconnaissance operation.

www.manaraa.com

63

7.1 Test Description

Figure 30 – Overhead representation of four main test situations.

www.manaraa.com

64

Figure 31 – Situation with no obstacles.

Figure 32 – Situation with single, inline obstacle.

www.manaraa.com

65

Figure 33 – Situation with single, offset obstacle.

Figure 34 – Situation with double, offset obstacles.

www.manaraa.com

66

Figure 35 – Situation with double, inline obstacles.

 To test the system, four different situations were used. These four situations are

diagrammed in figure 30 and pictured in figures 32 through 35. While these test

situations don‟t represent all possible real world situations, they do represent a large

percentage of situations commonly encountered. In the first of these test situations the

robot is instructed to drive in a straight line, and there is one obstacle in its path. This is

the single, inline obstacle situation shown in figure 32. The robot has to avoid the one

obstacle to get to the goal specified. In the second situation the robot is again instructed

to drive in a straight line, but this time the obstacle is close to the robot‟s path but not

directly in it. This is the single, offset obstacle situation shown in figure 33. The robot

doesn‟t need to make any corrections in order to reach the specified goal. In the third

situation there are two obstacles. The goal the robot is given is between the two obstacles

and slightly to one side. The robot can‟t go straight to the goal without running into one

of the obstacles. This is the double, offset obstacles situation shown in figure 34. In the

fourth situation there are two obstacles, both in the path of the robot. Both of the

obstacles must be avoided, but in opposite directions. This is the double, inline obstacles

www.manaraa.com

67

situation shown in figure 35. In all situations, the distance from the robot‟s starting

position to the desired goal location was 252 inches. In all situations a single drive

command was given to the robot telling it to go to the desired goal location. All other

movement after that was controlled by the system. Each situation was traversed seven

times. The results of each run were recorded and the average was computed.

 In order to determine the inherent inaccuracy of the system, a fifth situation was

also tested, a situation with no obstacles as shown in figure 31. The robot starting

position and goal position were the same distance from each other as specified above.

The robot was given a single drive forward command with the intent to drive from the

starting position to the goal position. The same measurements were recorded, as with the

other situations, though for the no-obstacle situation recording the number of corrections

and collisions is not meaningful since there are no obstacles. The results of this situation

are in figure 36.

 No-Obstacle Situation

 Corrections Distance to Goal Collisions

 0 20 0

 0 28 0

 0 29 0

 0 29 0

 0 34 0

 0 34 0

 0 42 0

Avg 0 30.9 0

Figure 36 – Results of no-obstacle situation. Distances are in inches.

 The distance to the goal in this situation can be accounted for by several factors.

The first is the inaccuracy of the goal specification system. Since the distance to the goal

is specified by clicking on a pixel and the number of pixels is limited, especially as the

www.manaraa.com

68

distance to the goal increases, it is impossible to tell the robot to go exactly 252 inches.

The second factor is that while the robot is driving its wheels tend to slip. This causes the

system to think that it has driven farther that it really has. This is a cumulative effect, so

the farther the distance the greater the effect. The third factor, which is related to wheel

slippage, is that the robot does not always drive straight. Sometimes one wheel turns

slightly faster than the other. Again, this effect is cumulative over distance, so for short

distances it is usually not significant, but can become so over long distances. The

distance to the goal for the no-obstacle situation is a measure of all of these factors

combined.

 To measure the performance of the safe/unsafe system, several measurements

were taken. The first, and most important, was how many times the robot collided with

obstacles. This measurement tells whether or not the robot is generally effective at

avoiding obstacles. The second measurement was how far the robot ended up from the

goal originally specified. This measurement gives an indication of how close the robot

can get to the specified goal given different levels of complexity in environment and

path. The third measurement was how many corrective turns the robot had to make while

navigating the situation. This measurement gives a feeling of how complicated the path

was and consequently, to a degree, how complicated the environment was.

www.manaraa.com

69

7.2 Results

 Single, Inline Obstacle Situation Single, Offset Obstacle Situation

 Corrections Distance to Goal Collisions Corrections Distance to Goal Collisions

 8 4 0 0 12 0

 3 31 0 0 18 0

 6 22 0 0 20 0

 13 26 0 3 10 0

 12 16 0 0 47 0

 13 28 0 0 44 0

 8 21 0 3 13 0

Avg 9 21.1 0 Avg 0.9 23.4 0

 Double, Offset Obstacle Situation Double, Inline Obstacle Situation

 Corrections Distance to Goal Collisions Corrections Distance to Goal Collisions

 2 20 0 4 36 1

 2 20 0 6 30 0

 2 26 0 2 42 0

 3 24 0 5 43 0

 1 30 0 7 30 0

 1 27 0 12 26 0

 1 26 0 6 26 0

Avg 1.7 24.7 0 Avg 6 33.3 0.1

Figure 37 – Results of four main situations. Total distance for all

situations is 252 inches. Distances are in inches.

 As can be seen in figure 37, on all the runs of all the situations the robot only

collided with one obstacle on one run. This was on one of the runs of situation 4, which

is arguably one of the hardest situations. There were no collisions on any other runs of

fourth situation or on any runs of any of the other situations. For the primary goal of the

safe/unsafe system of avoiding obstacles, this qualifies as a success.

 Also shown in figure 37, in the first through third situations the average distance

to the specified goal was about twenty inches. In the fourth situation the average distance

to the goal was slightly higher at about thirty inches. However, the fourth situation is one

of the more complex situations, so slightly less accuracy is to be expected. By comparing

figure 36 and figure 37, it can be noted that for the first through third situations, the

safe/unsafe system actually got closer to the desired goal location than simply driving

www.manaraa.com

70

straight to the goal. This result makes sense if the inaccuracy factors discussed in the

description of the no-obstacle situation are recalled. Several of the inherent inaccuracies

of the system are cumulative over distance. In the no-obstacle situation, the robot had to

travel the greatest uninterrupted distance of any of the situations, so the effects of the

cumulative inaccuracies were most pronounced in this situation. In the other situations,

the total distance was divided up into shorter distances (between corrective turns) so the

effect of these inaccuracies was less when using the safe/unsafe system. The distance to

the goal in the fourth situation was greater than in the no-obstacle situation, but not by a

significant amount. It can be concluded that the accuracy of the system, in terms of

reaching the goal location, is generally not worse when using safe/unsafe and can actually

be better.

 The average number of corrections increases with the complexity of the situation.

The only notable exception to this is in the single, inline obstacle situation. More

corrective turns were issued in this situation on average than any other situation even

though it is not necessarily the most complex environment. Since the system was able to

avoid the obstacle successfully and the final distance to the goal specified was acceptable,

the increased number of corrections in this situation is not a significant issue. If fewer

corrective turns were desired the system could be adjusted.

www.manaraa.com

71

Chapter 8 – Conclusion

 This thesis has detailed the workings and evaluation of the safe/unsafe system, the

user interface of which is shown in figure 31. This system uses interactive machine

learning to get input from the user, which is used to learn to detect obstacles. User input

can be obtained in real time as new environment elements are encountered. The system

then uses information about the obstacles to perform effective obstacle avoidance and

path following.

 The trainable obstacle detection of the system uses a relatively large number of

features enabling the system to be used in a wide variety of circumstances. Due to the

use of decision trees and integral images, the system can use this large number of features

and still have fast training times. And since only the features that are actually used are

computed during classification the system is able to remain interactive.

 The system uses the safe/unsafe classification to generate a map of the robot‟s

environment. This environment map is generated and updated based on dynamic

classifications. The map results in useful data that can be used to effectively avoid

obstacles while traveling to a goal specified by the user.

www.manaraa.com

72

Figure 38 – User interface of the safe/unsafe system showing all three main components (navigation,

safe/unsafe specification and environment mapping).

 There are many possible areas of further study, based on the work presented in

this thesis. A few are listed here. One possible area would be in the use of multiple

robots. The ability to control multiple robots and have them share classification

information was implemented in the safe/unsafe system but was not tested. The sharing

of classification information between robots could result in more robust classifiers. The

ability to share classification information might also be more effective, in that training

one robot would train all the others, thus making the training of multiple robots less time

consuming.

 A second possible area of continued study would be the fusing of the obstacle

detection portion of the safe/unsafe system with other sensor systems such as sonar.

Using two types of sensors could allow for more accurate environment maps and better

obstacle avoidance. However, a way to combine the two (or more) sensor systems in an

effective manner would need to be developed.

www.manaraa.com

73

 A third area of continued study would be to user test the safe/unsafe system. User

testing could help determine if the system helps the user more effectively navigate the

robot and if so, how much the system helps. If multiple robots are being tested then

fanout tests [OLSE04] [CRAN05] could be used to evaluate how the system affects the

user‟s ability to control multiple robots.

 A fourth area would be to add to the system the ability to recognize desirable

objects. The system currently only identifies two possible classifications: safe and

unsafe. Since the learning algorithm used can use an arbitrary number of possible

classifications, a third classification could easily be added. This classification could be

used to identify objects that are visually distinct from the rest of the robot‟s environment

that the user would like to be alerted to when the robot sees them. A possible example of

this might be a robot performing search and rescue in a forest. Obviously, the trees

should be classified as unsafe and the forest floor should be classified as safe. The third

classification could be used if it is known that the person being searched for is wearing a

red shirt. When a red shirt is seen by the robot, the user could be alerted (audio or visual

alert through the user interface) that the robot has seen something that looks like what is

being searched for.

 A fifth area in which research could continue would be to use alternate map

generation techniques. One possibility is in the use of different path planning algorithms.

As stated previously, there are many path-planning algorithms. The safe/unsafe system

was implemented using a generic best-first search with two values combined (distance to

the goal and unsafeness level) to form a single heuristic. The system might benefit from

the use of other path-planning algorithms. It is also possible that some algorithms might

www.manaraa.com

74

work better in some situations, while others work better in other situations. Another

possibility would be to use a more sophisticated map generation algorithm, such as

particle filters [THRU01].

 Traditional robot control systems have limitations. The safe/unsafe system solves

some of those problems. It allows a robot to detect obstacles based solely on visual

information, thus removing the limitation of only being able to detect “positive space”

obstacles. The system is also easily user trainable. This allows the system to be used in a

wide variety and situations and to adapt to new situations quickly. Finally, the

safe/unsafe system has been shown to be effective at avoiding obstacles while traveling

to a user specified goal.

www.manaraa.com

75

Bibliography

[BAIN83] L. Bainbridge, Ironies of Automation, Dept. of Psychology, University College

London, 1983

[BORE89] J. Borenstein and Y. Koren, Real-time Obstacle Avoidance for Fast Mobile

Robots, IEEE Transactions on Systems, Man, and Cybernetics, vol. 19, no. 5, pg. 1179-

1187 September/October, 1989

 [BORE91] J. Borenstein and Y. Koren, The Vector Field Histogram – Fast Obstacle

Avoidance for Mobile Robots, IEEE Journal of Robotics and Automation, vol. 7, no. 3,

pg. 278-288, June, 1991

[BRAI04] M. Brain, How the Mars Exploration Rovers Work, HowStuffWork,

http://science.howstuffworks.com/mars-rover3.htm, 2004

[BRUE03] D. J. Bruemmer, J. L. Marble, D. D. Dudenhoeffer, M. O. Anderson, M. D.

McKay, Mixed-Initiative Control for Remote Characterization of Hazardous

Environments, Proceedings of the 36
th

 Annual Hawaii International Conference on

System Sciences (HICSS ‟03) – Track 5 – Volume 5, 2003

www.manaraa.com

76

[BRUE04] D. J. Bruemmer, R. L. Boring, D. A. Few, J. L. Marble, M. C. Walton, “I Call

Shotgun!”: An Evaluation of Mixed-Initiative Control for Novice Users of a Search and

Rescue Robot, 2004 IEEE International Conference on Systems, Man and Cybernetics,

Volume 3, pg. 2847-2852, October, 2004

[CHAN99] P. Chan and G. Wyeth, Self-Learning Visual Path Recognition, Proceeding of

the Australian Conference on Robotics and Automation, Brisbane, 44-49, 1999

[CRAN02] J. W. Crandall and M. A. Goodrich, Characterizing Efficiency of Human

Robot Interaction: A Case Study of Shared-Control Teleoperation, IROS ‟02, 2002

[CRAN05] J. W. Crandall, M. A. Goodrich, D. R. Olsen Jr., C. W. Nielsen, Validating

Human-Robot Interaction Schemes in Multi-Tasking Environments, IEEE Transactions

on Systems, Man and Cybernetics, Vol. 35, Issue 4, pg. 438-449, July, 2005

 [DAVI95] A. J. Davison, I. D. Reid, D. W. Murray, The active camera as a projective

pointing device, Proc. 6
th

 British Machine Vision Conference, 1995

 [DAVI99] A. J. Davison, Mobile Robot Navigation Using Active Vision, PhD Thesis,

Robotics Research Group, University of Oxford, 1999. Available at

http://www.robots.ox.ac.uk/~ajd

www.manaraa.com

77

[DRUR03] J. Drury, L. D. Riek, A. D. Christiansen, Z. T. Eyler-Walker, A. J. Maggi and

D. B. Smith, Evaluating Human-Robot Interaction in a Search-and-Rescue Context, The

MITRE Corporation, 2003

 [FAIL03] J. A. Fails and D. R. Olsen, A Design Tool for Camera-based Interaction, CHI

„03, 2003

[FONG98] T. Fong, Collaborative Control: A Robot-Centric Model for Vehicle

Teleoperation, Carnegie Mellon University, Pittsburgh, PA, January, 1998

[JENS99] P. Jensfelt and H. I. Christensen, Laser Based Pose Tracking, IEEE Intl.

Conference on Robotics and Automation, May, 1999

 [LANG99] S. Lang, F. Yili and S. K. Tso, Visual Correction of Orientation Error for a

Mobile Robot, IEEE International Conference on Intelligent Robots and Systems, 1999

 [LECU05] Y. LeCun, U. Muller, J. Ben, E. Cosatto and B. Flepp, Off-Road Obstacle

Avoidance through End-to-End Learning, NIPS 2005

 [LEVI99] S. P. Levine, D. A. Bell, L. A. Jaros, R. C. Simpson, Y. Koren and J.

Borenstein, The NavChair Assistive Wheelchair Navigation System, IEEE Transactions

on Rehabilitation Engineering, vol. 7, no. 4, pg. 443-451, December, 1999

www.manaraa.com

78

 [MING00] J. Minguez and L. Montano, Nearness Diagram Navigation (ND): A New

Real Time Collision Avoidance Approach, Internal Report RR-00-14 University of

Zaragoza, pg. 60, February, 2000

[MITC97] T. M. Mitchell, Machine Learning, WCB/McGraw-Hill, ISBN 0-07-042807-7,

1997

 [MITR05] S. Mitri, S. Frintrop, K. Pervölz, H. Surmann, A. Nüchter, Robust Object

Detection at Regions of Interest with an Application in Ball Recognition, 2005

[MURP96] R. R. Murphy and E. Rogers, Cooperative Assistance for Remote Robot

Supervision, Presence, 5(2): 224-240, 1996

 [MURR96] D. W. Murray, I. D. Reid and A. J. Davison, Steering and Navigation

Behaviours using Fixation, Proceedings of the 7
th

 British Machine Vision Conference,

pg. 634-644, 1996

[NIEL06] C. W. Nielsen and M. A. Goodrich, Comparing the Usefulness of Video and

Map Information in Navigation Tasks, Proceedings of the 1
st
 ACM SIGCHI/SIGART

conference on Human-robot interaction, pg. 95-101, 2006

[OBER04] J. Oberg, Bringing Space Costs back down to Earth, MSNBC,

http://www.msnbc.msn.com/id/4031857/, 2004

www.manaraa.com

79

 [OHYA98] A. Ohya, A. Kosaka and A. Kak, Vision-Based Navigation by a Mobile

Robot with Obstacle Avoidance Using Single-Camera Vision and Ultrasonic Sensing,

IEEE Transactions on Robotics and Automantion, vol. 15, no. 6, pg. 969-978, December,

1998

 [OLSE04] D. R. Olsen, S. B. Wood and J. Turner, Metrics for Human Driving of

Multiple Robots, International Conference on Robotics and Automation, April, 2004

 [PAPA00] C. Papageorgiou and T. Poggio, A Trainable System for Object Detection,

International Journal of Computer Vision, vol. 38, no. 1, pg. 15-33, 2000

[PEAR84] J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem

Solving, Addison-Wesley, pg. 48, 1984

 [ROFE99] T. Rofer and A. Lankenau, Ensuring Safe Obstacle Avoidance in a Shared-

Control System, in J. M. Fuertes (Ed.), Proc. Of the 7
th

 Int. Conf. On Emergent

Technologies and Factory Automation, pg. 1405-1414, 1999

 [ROSE95] J. Rosenblatt, DAMN: A Distributed Architecture for Mobile Navigation,

Thesis Summary, The Robotics Institute, Carnegie Mellon University, 1995

www.manaraa.com

80

[RUSS03] S. J. Russel and P. Norvig, Artificial Intelligence: A Modern Approach, 2
nd

Edition, Pearson Education, Inc., 2003

[STEN02] R. Stenger, Eight-eyed robot blasts off for Mars, CNN,

http://www.cnn.com/2003/TECH/space/06/10/mars.rover/index.html, 2002

[THRU01] S. Thrun, Is Robotics Going Statistics? The Field of Probabilistic Robotics,

Journal of the ACM, Carnegie Mellon University, March, 2001

 [VIOL01] P. Viola and M. Jones, Robust Real-time Object Detection, Second

International Workshop on Statistical and Computational Theories of Vision – Modeling,

Learning, Computing, and Sampling, July 2001

[YANC05] H. A. Yanco, M. Baker, R. Casey, A. Chanler, M. Desai, D. Hestand, B.

Keyes and P. Thoren, Improving Human-Robot Interaction for Remote Robot Operation,

University of Massachusetts Lowell, 2005

[ZHAN92] Z. Zhang, Iterative Point Matching for Registration of Free-Form Curves,

International Journal of Computer Vision, vol. 13, no. 2, pg. 119-152, October, 1992

www.manaraa.com

81

Appendix – List of Features
All features are generated for a specific pixel. For the purposes of describing these

features, the pixel in question will be referred to by having coordinates of x and y.

Basic Features

R1 – Red value at (x, y)

G1 – Green value at (x, y)

B1 – Blue value at (x, y)

R3 – Sum of all red values in a 3x3 area with (x, y) at its center

G3 – Sum of all green values in a 3x3 area with (x, y) at its center

B3 – Sum of all blue values in a 3x3 area with (x, y) at its center

R9 – Sum of all red values in a 9x9 area with (x, y) at its center

G9 – Sum of all green values in a 9x9 area with (x, y) at its center

B9 – Sum of all blue values in a 9x9 area with (x, y) at its center

R27 – Sum of all red values in a 27x27 area with (x, y) at its center

G27 – Sum of all green values in a 27x27 area with (x, y) at its center

B27 – Sum of all blue values in a 27x27 area with (x, y) at its center

R81 – Sum of all red values in an 81x81 area with (x, y) at its center

G81 – Sum of all green values in an 81x81 area with (x, y) at its center

B81 – Sum of all blue values in an 81x81 area with (x, y) at its center

A1 – Max of R1, G1 and B1

A3 – Max of R3, G3, and B3

A9 – Max of R9, G9 and B9

A27 – Max of R27, G27 and B27

A81 – Max of R81, G81 and B81

I1 – Min of R1, G1 and B1

I3 – Min of R3, G3 and B3

I9 – Min of R9, G9 and B9

I27 – Min of R27, G27 and B27

I81 – Min of R81, G81 and B81

Averaging Features

C-AVE-S – Average C (red, green or blue) values over an SxS area centered on (x, y)

Valid values of S are 27, 81, 100, 144 and 225 for a total of 15 features

Differencing Features of Same Size

DR1G1 – Difference between R1 and G1

DR3G3 – Difference between R3 and G3

DR9G9 – Difference between R9 and G9

DR27G27 – Difference between R27 andG27

DR81G81 – Difference between R81 and G81

www.manaraa.com

82

DG1B1 – Difference between G1 and B1

DG3B3 – Difference between G3 and B3

DG9B9 – Difference between G9 and B9

DG27B27 – Difference between G27 and B27

DG81B81 – Difference between G81 and B81

DB1R1 – Difference between B1 and R1

DB3R3 – Difference between B3 and R3

DB9R9 – Difference between B9 and R9

DB27R27 – Difference between B27 and R27

DB81R81 – Difference between B81 and R81

DA1R1 – Difference between A1 and R1

DA3R3 – Difference between A3 and R3

DA9R9 – Difference between A9 and R9

DA27R27 – Difference between A27 and R27

DA81R81 – Difference between A81 and R81

DA1G1 – Difference between A1 and G1

DA3G3 – Difference between A3 and G3

DA9G9 – Difference between A9 and G9

DA27G27 – Difference between A27 and G27

DA81G81 – Difference between A81 and G81

DA1B1 – Difference between A1 and B1

DA3B3 – Difference between A3 and B3

DA9B9 – Difference between A9 and B9

DA27B27 – Difference between A27 and B27

DA81B81 – Difference between A81 and B81

DR1I1 – Difference between R1 and I1

DR3I3 – Difference between R3 and I3

DR9I9 – Difference between R9 and I9

DR27I27 – Difference between R27 and I27

DR81I81 – Difference between R81 and I81

DG1I1 – Difference between G1 and I1

DG3I3 – Difference between G3 and I3

DG9I9 – Difference between G9 and I9

DG27I27 – Difference between G27 and I27

DG81I81 – Difference between G81 and I81

DB1I1 – Difference between B1 and I1

DB3I3 – Difference between B3 and I3

DB9I9 – Difference between B9 and I9

DB27I27 – Difference between B27 and I27

DB81I81 – Difference between B81 and I81

Differencing Features of Different Size

DR1R3 – Difference between R1 and R3

DR1R9 – Difference between R1 and R9

DR1R27 – Difference between R1 and R27

www.manaraa.com

83

DR1R81 – Difference between R1 and R81

DR3R9 – Difference between R3 and R9

DR3R27 – Difference between R3 and R27

DR3R81 – Difference between R3 and R81

DR9R27 – Difference between R9 and R27

DR9R81 – Difference between R9 and R81

DR27R81 – Difference between R27 and R81

DG1G3 – Difference between G1 and G3

DG1G9 – Difference between G1 and G9

DG1G27 – Difference between G1 and G27

DG1G81 – Difference between G1 and G81

DG3G9 – Difference between G3 and G9

DG3G27 – Difference between G3 and G27

DG3G81 – Difference between G3 and G81

DG9G27 – Difference between G9 and G27

DG9G81 – Difference between G9 and G81

DG27G81 – Difference between G27 and G81

DB1B3 – Difference between B1 and B3

DB1B9 – Difference between B1 and B9

DB1B27 – Difference between B1 and B27

DB1B81 – Difference between B1 and B81

DB3B9 – Difference between B3 and B9

DB3B27 – Difference between B3 and B27

DB3B81 – Difference between B3 and B81

DB9B27 – Difference between B9 and B27

DB9B81 – Difference between B9 and B81

DB27B81 – Difference between B27 and B81

DR1G3 – Difference between R1 and G3

DR1G9 – Difference between R1 and G9

DR1G27 – Difference between R1 and G27

DR1G81 – Difference between R1 and G81

DR3G9 – Difference between R3 and G9

DR3G27 – Difference between R3 and G27

DR3G81 – Difference between R3 and G81

DR9G27 – Difference between R9 and G27

DR9G81 – Difference between R9 and G81

DR27G81 – Difference between R27 and G81

DG1B3 – Difference between G1 and B3

DG1B9 – Difference between G1 and B9

DG1B27 – Difference between G1 and B27

DG1B81 – Difference between G1 and B81

DG3B9 – Difference between G3 and B9

DG3B27 – Difference between G3 and B27

DG3B81 – Difference between G3 and B81

DG9B27 – Difference between G9 and B27

DG9B81 – Difference between G9 and B81

www.manaraa.com

84

DG27B81 – Difference between G2 and B81

DB1R3 – Difference between B1 and R3

DB1R9 – Difference between B1 and R9

DB1R27 – Difference between B1 and R27

DB1R81 – Difference between B1 and R81

DB3R9 – Difference between B3 and R9

DB3R27 – Difference between B3 and R27

DB3R81 – Difference between B3 and R81

DB9R27 – Difference between B9 and R27

DB9R81 – Difference between B9 and R81

DB27R81 – Difference between B27 and R81

DA3R1 – Difference between A3 and R1

DA9R1 – Difference between A9 and R1

DA27R1 – Difference between A27 and R1

DA81R1 – Difference between A81 and R1

DA9R3 – Difference between A9 and R3

DA27R3 – Difference between A27 and R3

DA81R3 – Difference between A81 and R3

DA27R9 – Difference between A27 and R9

DA81R9 – Difference between A81 and R9

DA81R27 – Difference between A81 and R27

DA3G1 – Difference between A3 and G1

DA9G1 – Difference between A9 and G1

DA27G1 – Difference between A27 and G1

DA81G1 – Difference between A81 and G1

DA9G3 – Difference between A9 and G3

DA27G3 – Difference between A27 and G3

DA81G3 – Difference between A81 and G3

DA27G9 – Difference between A27 and G9

DA81G9 – Difference between A81 and G9

DA81G27 – Difference between A81 and G27

DA3B1 – Difference between A3 and B1

DA9B1 – Difference between A9 and B1

DA27B1 – Difference between A27 and B1

DA81B1 – Difference between A81 and B1

DA9B3 – Difference between A9 and B3

DA27B3 – Difference between A27 and B3

DA81B3 – Difference between A81 and B3

DA27B9 – Difference between A27 and B9

DA81B9 – Difference between A81 and B9

DA81B27 – Difference between A81 and B27

DR1I3 – Difference between R1 and I3

DR1I9 – Difference between R1 and I9

DR1I27 – Difference between R1 and I27

DR1I81 – Difference between R1 and I81

DR3I9 – Difference between R3 and I9

www.manaraa.com

85

DR3I27 – Difference between R3 and I27

DR3I81 – Difference between R3 and I81

DR9I27 – Difference between R9 and I27

DR9I81 – Difference between R9 and I81

DR27I81 – Difference between R27 and I81

DG1I3 – Difference between G1 and I3

DG1I9 – Difference between G1 and I9

DG1I27 – Difference between G1 and I27

DG1I81 – Difference between G1 and I81

DG3I9 – Difference between G3 and I9

DG3I27 – Difference between G3 and I27

DG3I81 – Difference between G3 and I81

DG9I27 – Difference between G9 and I27

DG9I81 – Difference between G9 and I81

DG27I81 – Difference between G27 and I81

DB1I3 – Difference between B1 and I3

DB1I9 – Difference between B1 and I9

DB1I27 – Difference between B1 and I27

DB1I81 – Difference between B1 and I81

DB3I9 – Difference between B3 and I9

DB3I27 – Difference between B3 and I27

DB3I81 – Difference between B3 and I81

DB9I27 – Difference between B9 and I27

DB9I81 – Difference between B9 and I81

DB27I81 – Difference between R1G1 and I81

Gradient Features (Vertical and Horizontal)

V-C-S – Sum of C (red, green or blue) values from x – (S / 2) to x and y – (S / 2) and y +

(S / 2) minus the sum of C (red, green or blue) values from x to x + (S / 2) and y – (S / 2)

and y + (S / 2)

H-C-S – Sum of C (red, green or blue) values from x – (S / 2) to x + (S / 2) and y – (S / 2)

and y minus the sum of C (red, green or blue) values from x – (S / 2) to x + (S / 2) and y

and y + (S / 2)

VA-S – Max of VR-S, VG-S and VB-S

HA-S – Max of HR-S, HG-S and HB-S

Valid values of S are 2, 4, 8, 16, 32 and 64 for a total of 48 features

Differenced Averages

DRA27 – Difference between RAVE27 and average of the red values in a 9x9 area

centered on (x, y – 10)

DRA81 – Difference between RAVE81 and average of the red values in a 27x27 area

centered on (x, y – 40)

DRA100 – Difference between RAVE100 and average of the red values in a 27x27 area

centered on (x, y – 50)

www.manaraa.com

86

DRA144 – Difference between RAVE144 and average of the red values in a 27x27 area

centered on (x, y – 72)

DRA225 – Difference between RAVE225 and average of the red values in a 27x27 area

centered on (x, y – 112)

DGA27 – Difference between GAVE27 and average of the red values in a 9x9 area

centered on (x, y – 10)

DGA81 – Difference between GAVE81 and average of the red values in a 27x27 area

centered on (x, y – 40)

DGA100 – Difference between GAVE100 and average of the red values in a 27x27 area

centered on (x, y – 50)

DGA144 – Difference between GAVE144 and average of the red values in a 27x27 area

centered on (x, y – 72)

DGA225 – Difference between GAVE225 and average of the red values in a 27x27 area

centered on (x, y – 112)

DBA27 – Difference between BAVE27 and average of the red values in a 9x9 area

centered on (x, y – 10)

DBA81 – Difference between BAVE81 and average of the red values in a 27x27 area

centered on (x, y – 40)

DBA100 – Difference between BAVE100 and average of the red values in a 27x27 area

centered on (x, y – 50)

DBA144 – Difference between BAVE144 and average of the red values in a 27x27 area

centered on (x, y – 72)

DBA225 – Difference between BAVE225 and average of the red values in a 27x27 area

centered on (x, y – 112)

DAVER225G225 – Difference between RAVE225 and GAVE225

DAVER225B225 – Difference between RAVE225 and BAVE225

DAVEG225B225 – Difference between GAVE225 and BAVE225

DAVER144G144 – Difference between RAVE144 and GAVE144

DAVER144B144 – Difference between RAVE144 and BAVE144

DAVEG144B144 – Difference between GAVE144 and BAVE144

DAVER100G100 – Difference between RAVE100 and GAVE100

DAVER100B100 – Difference between RAVE100 and BAVE100

DAVEG100B100 – Difference between GAVE100 and BAVE100

DAVER81G81 – Difference between RAVE81 and GAVE81

DAVER81B81 – Difference between RAVE81 and BAVE81

DAVEG81B81 – Difference between GAVE81 and BAVE81

DAVER27G27 – Difference between RAVE27 and GAVE27

DAVER27B27 – Difference between RAVE27 and BAVE27

DAVEG27B27 – Difference between GAVE27 and BAVE27

	Brigham Young University
	BYU ScholarsArchive
	2007-07-02

	Obstacle Avoidance and Path Traversal Using Interactive Machine Learning
	Jonathan M. Turner
	BYU ScholarsArchive Citation

	TITLE PAGE
	ABSTRACT
	Chapter 1 – Introduction
	1.1 The Safe/Unsafe System
	1.2 Approaches to Robot Control
	1.2.1 Robot Perspective vs. User Perspective
	1.2.2 Driving With Distractions

	Chapter 2 – Related Work
	2.1 Shared Control
	2.2 Sonar/Laser
	2.3 Vision-Based
	2.3.1 Fixed Vision-Based
	2.3.2 Trainable Vision-Based

	2.4 Interface Support

	Chapter 3 – Overview
	3.1 System Components
	3.2 Navigation Interface
	3.3 Safe/Unsafe Specification
	3.4 Map Generation
	3.5 Path Traversal

	Chapter 4 – Classification
	4.1 Decision Trees
	4.2 Classifier Training
	4.3 Classifying Images

	Chapter 5 – Map Generation
	5.1 Generating the Environment Map
	5.2 Updating the Environment Map

	Chapter 6 – Path Traversal
	6.1 Path Generation
	6.2 Path Following

	Chapter 7 – Evaluation
	7.1 Test Description
	7.2 Results

	Chapter 8 – Conclusion
	Bibliography
	Appendix – List of Features
	Basic Features
	Averaging Features
	Differencing Features of Same Size
	Differencing Features of Different Size
	Gradient Features (Vertical and Horizontal)
	Differenced Averages

